Ir al contenido

Documat


A generalized version of the rings CK(X) and C∞(X)– an enquery about when they become Noetheri

  • Acharyya, Sudip Kumar [1] ; Chattopadhyay, Kshitish Chandra [2] ; Rooj, Pritam [1]
    1. [1] University of Calcutta

      University of Calcutta

      India

    2. [2] University of Burdwan

      University of Burdwan

      India

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 16, Nº. 1, 2015, págs. 81-87
  • Idioma: inglés
  • DOI: 10.4995/agt.2015.3247
  • Enlaces
  • Resumen
    • Suppose $F$ is a totally ordered field equipped with its order topology and $X$ a completely $F$-regular topological space. Suppose $\mathcal{P}$ is an ideal of closed sets in $X$ and $X$ is locally-$\mathcal{P}$. Let $C_\mathcal{P}(X, F)=\{f\colon X\rightarrow F~|~ f$ is continuous on $X$ and its support belongs to $\mathcal{P}\}$ and $C_\infty^\mathcal{P}(X, F)=\{f\in C_\mathcal{P}(X, F)~|~ \forall \varepsilon>0$ in $F$, $cl_X\{x\in X: |f(x)|>\varepsilon\}\in \mathcal{P}\}$. Then $C_\mathcal{P}(X, F)$ is a Noetherian ring if and only if $C_\infty^\mathcal{P}(X,F)$ is a Noetherian ring if and only if $X$ is a finite set. The fact that a locally compact Hausdorff space $X$ is finite if and only if the ring $C_K(X)$ is Noetherian if and only if the ring $C_\infty(X)$ is Noetherian, follows as a particular case on choosing $F=\mathbb{R}$ and $\mathcal{P}=$ the ideal of all compact sets in $X$. On the other hand if one takes $F=\mathbb{R}$ and $\mathcal{P}=$ the ideal of closed relatively pseudocompact subsets of $X$, then it follows that a locally pseudocompact space $X$ is finite if and only if the ring $C_\psi(X)$ of all real valued continuous functions on $X$ with pseudocompact support is Noetherian if and only if the ring $C_\infty^\psi(X)=\{f\in C(X)~|~ \forall\varepsilon>0, cl_X\{x\in X: |f(x)|>\varepsilon\}$ is pseudocompact $\}$ is Noetherian. Finally on choosing $F=\mathbb{R}$ and $\mathcal{P}=$ the ideal of all closed sets in $X$, it follows that: $X$ is finite if and only if the ring $C(X)$ is Noetherian if and only if the ring $C^*(X)$ is Noetherian.

  • Referencias bibliográficas
    • S. K. Acharyya and S. K. Ghosh, Functions in C(X) with support lying on a class of subsets of X, Topology Proc. 35 (2010), 127-148.
    • S. K. Acharyya, K. C. Chattopadhyay and P. P. Ghosh, Constructing the Banaschewski Compactification without the Dedekind completeness axiom,...
    • D. S. Dummit and R. M. Foote, Abstract Algebra. 2nd Edition, John Wiley and Sons, Inc., 2005.
    • L. Gillman and M. Jerison, Rings of Continuous Functions. New York: Van Nostrand Reinhold Co., 1960. (http://dx.doi.org/10.1007/978-1-4615-7819-2)
    • I. Gelfand and A. Kolmogoroff, On Rings of Continuous Functions on topological spaces, Dokl. Akad. Nauk SSSR 22 (1939), 11-15.
    • H. E. Hewitt, Rings of real valued Continuous Functions, I, Trans. Amer. Math. Soc. 64 (1948), 54-99. (http://dx.doi.org/10.1090/S0002-9947-1948-0026239-9)
    • D. G. Johnson and M. Mandelkar, Functions with pseudocompact support, General Topology and its App. 3 (1973), 331-338. (http://dx.doi.org/10.1016/0016-660X(73)90020-2)
    • C. W. Kohls, Ideals in rings of Continuous Functions, Fund. Math. 45 (1957), 28-50.
    • C. W. Kohls, Prime ideals in rings of Continuous Functions, Illinois. J. Math. 2 (1958), 505-536.
    • M. Mandelkar, Support of Continuous Functions, Trans. Amer. Math. Soc. 156 (1971), 73-83. (http://dx.doi.org/10.1090/S0002-9947-1971-0275367-4)
    • M. H. Stone, Applications of the theory of Boolean rings to General Topology, Trans. Amer. Math. Soc. 41 (1937), 375-481.(http://dx.doi.org/10.1090/S0002-9947-1937-1501905-7)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno