Ir al contenido

Documat


Semiparametric Time Series Models with Log-concave Innovations: Maximum Likelihood Estimation and its Consistency.

  • Autores: Yining Chen
  • Localización: Scandinavian journal of statistics: Theory and applications, ISSN 0303-6898, Vol. 42, Nº. 1, 2015, págs. 1-31
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We study semiparametric time series models with innovations following a log-concave distribution. We propose a general maximum likelihood framework that allows us to estimate simultaneously the parameters of the model and the density of the innovations. This framework can be easily adapted to many well-known models, including autoregressive moving average (ARMA), generalized autoregressive conditionally heteroscedastic (GARCH), and ARMA-GARCH models. Furthermore, we show that the estimator under our new framework is consistent in both ARMA and ARMA-GARCH settings. We demonstrate its finite sample performance via a thorough simulation study and apply it to model the daily log-return of the FTSE 100 index


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno