We prove that the elliptic maximal function maps the Sobolev space W4,eta(R2) into L4(R2) for all eta > 1/6. The main ingredients of the proof are an analysis of the intersectiQn properties of elliptic annuli and a combinatorial method of Kolasa and Wolff.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados