Ir al contenido

Documat


Biased random walks on Galton–Watson trees with leaves

  • Autores: Gérard Ben Arous, Alexander Fribergh, Nina Gantert, Alan Hammond
  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 40, Nº. 1, 2012, págs. 280-338
  • Idioma: inglés
  • DOI: 10.1214/10-AOP620
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We consider a biased random walk Xn on a Galton–Watson tree with leaves in the sub-ballistic regime. We prove that there exists an explicit constant γ = γ(β) ∈ (0, 1), depending on the bias β, such that |Xn| is of order nγ. Denoting Δn the hitting time of level n, we prove that Δn/n1/γ is tight. Moreover, we show that Δn/n1/γ does not converge in law (at least for large values of β). We prove that along the sequences nλ(k) = ⌊λβγk⌋, Δn/n1/γ converges to certain infinitely divisible laws. Key tools for the proof are the classical Harris decomposition for Galton–Watson trees, a new variant of regeneration times and the careful analysis of triangular arrays of i.i.d. heavy-tailed random variables.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno