Ir al contenido

Documat


A uniformly consistent estimator of causal effects under the k-triangle-faithfulness assumption

  • Autores: Peter Spirtes, Jiji Zhang
  • Localización: Statistical science, ISSN 0883-4237, Vol. 29, Nº. 4, 2014 (Ejemplar dedicado a: Semiparametrics and Causal Inference), págs. 662-678
  • Idioma: inglés
  • DOI: 10.1214/13-sts429
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Spirtes, Glymour and Scheines [Causation, Prediction, and Search (1993) Springer] described a pointwise consistent estimator of the Markov equivalence class of any causal structure that can be represented by a directed acyclic graph for any parametric family with a uniformly consistent test of conditional independence, under the Causal Markov and Causal Faithfulness assumptions. Robins et al. [Biometrika 90 (2003) 491�515], however, proved that there are no uniformly consistent estimators of Markov equivalence classes of causal structures under those assumptions. Subsequently, Kalisch and Bühlmann [J. Mach. Learn. Res. 8 (2007) 613�636] described a uniformly consistent estimator of the Markov equivalence class of a linear Gaussian causal structure under the Causal Markov and Strong Causal Faithfulness assumptions. However, the Strong Faithfulness assumption may be false with high probability in many domains. We describe a uniformly consistent estimator of both the Markov equivalence class of a linear Gaussian causal structure and the identifiable structural coefficients in the Markov equivalence class under the Causal Markov assumption and the considerably weaker k-Triangle-Faithfulness assumption.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno