Ir al contenido

Documat


Q- and A-learning methods for estimating optimal dynamic treatment regimes

  • Autores: Phillip J. Schulte, Anastasios A. Tsiatis, Eric B. Laber, Marie Davidian
  • Localización: Statistical science, ISSN 0883-4237, Vol. 29, Nº. 4, 2014 (Ejemplar dedicado a: Semiparametrics and Causal Inference), págs. 640-661
  • Idioma: inglés
  • DOI: 10.1214/13-sts450
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In clinical practice, physicians make a series of treatment decisions over the course of a patient�s disease based on his/her baseline and evolving characteristics. A dynamic treatment regime is a set of sequential decision rules that operationalizes this process. Each rule corresponds to a decision point and dictates the next treatment action based on the accrued information.

      Using existing data, a key goal is estimating the optimal regime, that, if followed by the patient population, would yield the most favorable outcome on average. Q- and A-learning are two main approaches for this purpose. We provide a detailed account of these methods, study their performance, and illustrate them using data from a depression study.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno