Ir al contenido

Documat


The geometry of the moduli space of odd spin curves

  • Autores: Gavril Farkas, Alessandro Verra
  • Localización: Annals of mathematics, ISSN 0003-486X, Vol. 180, Nº 3, 2014, págs. 927-970
  • Idioma: inglés
  • DOI: 10.4007/annals.2014.180.3.3
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The spin moduli space S ¯ ¯ g is the parameter space of theta characteristics (spin structures) on stable curves of genus g . It has two connected components, S ¯ ¯ - g and S ¯ ¯ + g , depending on the parity of the spin structure. We establish a complete birational classification by Kodaira dimension of the odd component S ¯ ¯ - g of the spin moduli space. We show that S ¯ ¯ - g is uniruled for g<12 and even unirational for g=8 . In this range, introducing the concept of cluster for the Mukai variety whose one-dimensional linear sections are general canonical curves of genus g , we construct new birational models of S ¯ ¯ - g . These we then use to explicitly describe the birational structure of S ¯ ¯ - g . For instance, S ¯ ¯ - 8 is birational to a locally trivial P 7 -bundle over the moduli space of elliptic curves with seven pairs of marked points. For g=12 , we prove that S ¯ ¯ - g is a variety of general type. In genus 12 , this requires the construction of a counterexample to the Slope Conjecture on effective divisors on the moduli space of stable curves of genus 12


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno