Ir al contenido

Documat


Resumen de Efficient evaluation of vapour-liquid equilibria from multi-parameter thermodynamic models using differential algebra

B. Re, Roberto Armellín Árbol académico, N. R. Nannan, Alberto Guardone

  • An efficient method is proposed to evaluate the Vapour�Liquid Equilibrium (VLE) curve for complex multi-parameter technical and reference thermodynamic equations of state, in connection with Computational Fluid Dynamics (CFD) simulations of compressible flows of real gases. Differential algebra techniques are used to obtain an approximation of the VLE curve from the reference equation of state of carbon dioxide. Seven fourth-order Taylor polynomials are required to approximate the VLE curve for a reduced pressure between 0.7 and 1, with an error on density below 0.04%, except near the critical point where the error is around 0.1%. The proposed approach is proved to be a suitable alternative to standard Look-Up Table (LUT) techniques, with comparable accuracy and computational burden.

    Moreover, the explicit use of the model analytical expression in the determination of the polynomial expansions allows to reduce the number of expansion poles and it will possibly simplify the approximation of different fluids, including mixtures.


Fundación Dialnet

Mi Documat