Ir al contenido

Documat


Using low-rank approximation of the Jacobian matrix in the Newton-Raphson method to solve certain singular equations

  • Autores: Stepan Yu. Gatilov
  • Localización: Journal of computational and applied mathematics, ISSN 0377-0427, Vol. 272, Nº 1, 2014, págs. 8-24
  • Idioma: inglés
  • DOI: 10.1016/j.cam.2014.04.024
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • It is well-known that the pseudoinverse Newton�Raphson method converges locally if the rank of the Jacobian matrix is constant.

      A weaker assumption is considered: a set of zeros Z is a smooth manifold of dimension k, and the rank of the Jacobian is exactly n - k at all zeros. Low-rank approximation of the Jacobian matrix is used.

      It is proved that Newton�Raphson quadratically converges in this case. Also, the predictor�corrector approach can be used to trace a curve of zeros if k = 1.

      The application considered belongs to the field of computer-aided geometric design.

      The method is applied to trace a curve of tangential intersection of two parametric surfaces.

      Some experimental results are shown, suggesting that the method is stable.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno