Se desarrolla un modelo de predicción de temperaturas máximas medias mensuales usando una Red Neuronal Artificial (RNA) del tipo perceptron multicapa. El modelo realiza predicciones del valor de temperatura media mensual del mes siguiente al último dato de la serie. El área de estudio considerada es la meseta central española (Castilla-León, Castilla La Mancha). Los datos de temperatura máxima media mensual se obtuvieron de las observaciones en las estaciones de la red sinóptica y climatológica de la Agencia Estatal de Meteorología (AEMET) de España. El conjunto de datos es dividido en dos subconjuntos, el de entrenamiento y el de prueba. El conjunto de entrenamiento se usa para el desarrollo del modelo y el de prueba para la evaluación del modelo establecido. Los parámetros de la RNA se ajustan experimentalmente. Se utilizó un algoritmo de retropropagación con tasa de entrenamiento variable para llevar a cabo un entrenamiento supervisado. Posteriormente se evaluaron las capacidades de predicción del modelo a partir del coeficiente de determinación (R2), el error cuadrático medio (MSE) y las gráficas de dispersión y secuencia entre las series simuladas y las reales. Los resultados obtenidos con el modelo (que indican un buen ajuste entre las series reales y simuladas) se comparan con los obtenidos con modelos ARIMA. Los resultados son similares, si bien el modelo RNA es capaz de ajustar los valores extremos de las series de trabajo y algunas anomalías, lo que no sucede con modelos ARIMA.
A forecasting model for the mean monthly maximum temperatures (TMaxMean) using an artificial neuronal network (ANN) of the multilayer perceptron type (Multilayer Perceptron, MLP) has been developed. This model forecast the TMaxMean variable one month ahead after the last data point of the climate series. The study area considered is the central plateau of the Iberian Peninsula (Castilla y León and Castilla la Mancha). The data series of mean monthly maximum temperature (TMaxMean) were obtained of the observations at the stations of the synoptic and climatological network of the Agencia Estatal de Meteorología (AEMET). The data set is divided into two samples of training and testing. The training data set is used for the model development and the test set is used to evaluate the established model. The parameters of the ANN are fitted experimentally. A supervised training of the MLP ANN is performed. We used a backpropagation (BP) training algorithm with a variable learning rate. After that we evaluated the forecasting skills of the model from the coefficient of determination (R2), the mean square root error (MSE) and the dispersion and sequence graphics of the real and simulated series. The results obtained with the model (indicates a good fit between the real and simulated series) are compared with those obtained with ARIMA models. The results are similar, while the model ANN is able to adjust the extreme values of the real series and certain anomalies, which is not the case with ARIMA models.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados