Ir al contenido

Documat


New common fixed point theorems for multivalued maps

  • Singh, S. L. [3] ; Kamal, Raj [1] ; Chugh, Renu [1] ; Mishra, Swami Nath [2]
    1. [1] Maharshi Dayanand University

      Maharshi Dayanand University

      India

    2. [2] Walter Sisulu University

      Walter Sisulu University

      King Sabata Dalindyebo, Sudáfrica

    3. [3] Gurukula Kangri University
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 15, Nº. 2, 2014, págs. 111-119
  • Idioma: inglés
  • DOI: 10.4995/agt.2014.2815
  • Enlaces
  • Resumen
    • Common fixed point theorems for a new class of multivalued maps are obtained, which generalize and extend classical fixed point theorems of Nadler and Reich and some recent Suzuki type fixed point theorems.

  • Referencias bibliográficas
    • A. Abkar and M. Eslamian, Fixed point theorems for Suzuki generalized nonexpansive multivalued mappings in Banach spaces, Fixed Point Theory...
    • N. A. Assad and W. A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math. 43 (1972), 553-562. (http://dx.doi.org/10.2140/pjm.1972.43.553)
    • Lj. B. Ciric, Fixed points for generalized multivalued contractions, Mat. Vesnik 9, no. 24 (1972), 265-272.
    • Lj. B. Ciric, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267-273. (http://dx.doi.org/10.2307/2040075)
    • B. Damjanovic and D. Doric, Multivalued generalizations of the Kannan fixed point theorem, Filomat 25, no. 1 (2011),125-131. (http://dx.doi.org/10.2298/FIL1101125D)
    • S. Dhompongsa and H. Yingtaweesittikul, Fixed points for multivalued mappings and the metric completeness, Fixed Point Theory Appl. 2009 (2009),...
    • D. Doric and R. Lazovic, Some Suzuki-type fixed point theorems for generalized multivalued mappings and applications, Fixed Point Theory Appl....
    • M. Kikkawa and T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Anal....
    • M. Kikkawa and T. Suzuki, Some notes on fixed point theorems with constants, Bull. Kyushu Inst. Technol. Pure Appl. Math. 56 (2009), 11-18.
    • G. Mot and A. Petrusel, Fixed point theory for a new type of contractive multi-valued operators, Nonlinear Anal. 70, no. 9 (2008), 3371-3377....
    • S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488. (http://dx.doi.org/10.2140/pjm.1969.30.475)
    • S. B. Nadler, Hyperspaces of Sets, Marcel Dekker, New York, 1978.
    • O. Popescu, Two fixed point theorems for generalized contractions with constants in complete metric space, Cent. Eur. J. Math. 7, no. 3 (2009),...
    • S. Reich, Fixed points of multi-valued functions. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 51, no. 8 (1971), 32-35.
    • B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977), 257-290. (http://dx.doi.org/10.1090/S0002-9947-1977-0433430-4)
    • B. D. Rouhani and S. Moradi, Common fixed point of multivalued generalized $varphi$-weak contractive mappings, Fixed Point Theory Appl. 2010...
    • I. A. Rus, Fixed point theorems for multivalued mappings in complete metric spaces, Math. Japon. 20 (1975), 21-24.
    • I. A. Rus, Generalized Contractions And Applications, Cluj-Napoca, 2001.
    • K. P. R. Sastry and S. V. R. Naidu, Fixed point theorems for generalized contraction mappings, Yokohama Math. J. 25 (1980), 15-29.
    • S. L. Singh and S. N. Mishra, Coincidence theorems for certain classes of hybrid contractions, Fixed Point Theory Appl. 2010 (2010), 14 pp....
    • S. L. Singh and S. N. Mishra, Remarks on recent fixed point theorems, Fixed Point Theory Appl. 2010 (2010), 18 pp. (http://dx.doi.org/10.1155/2010/452905)
    • S. L. Singh and S. N. Mishra, Fixed point theorems for single-valued and multi-valued maps. Nonlinear Anal. 74, no. 6 (2011), 2243-2248. (http://dx.doi.org/10.1016/j.na.2010.11.029)
    • T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (5) (2008), 1861-1869....
    • T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal. 71, no. 11 (2009), 5313-5317. (http://dx.doi.org/10.1016/j.na.2009.04.017)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno