Ir al contenido

Documat


Fuzzy quasi-metric spaces

    1. [1] Universidad Politécnica de Valencia

      Universidad Politécnica de Valencia

      Valencia, España

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 5, Nº. 1, 2004, págs. 129-136
  • Idioma: inglés
  • DOI: 10.4995/agt.2004.2001
  • Enlaces
  • Resumen
    • We generalize the notions of fuzzy metric by Kramosil and Michalek, and by George and Veeramani to the quasi-metric setting.We show that every quasi-metric induces a fuzzy quasi-metric and ,conversely, every fuzzy quasi-metric space generates a quasi-metrizable topology. Other basic properties are discussed.

  • Referencias bibliográficas
    • A. Di Concilio, Spazi quasimetrici e topologie ad essi associate, Rend. Accad. Sci. Fis. Mat. Napoli 38 (1971), 113-130.
    • P. Fletcher, W.F. Lindgren, Quasi-Uniform Spaces, Marcel Dekker, New York, 1982.
    • A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994), 395-399. http://dx.doi.org/10.1016/0165-0114(94)90162-7
    • A. George, P. Veeramani, Some theorems in fuzzy metric spaces, J. Fuzzy Math. 3 (1995), 933-940.
    • A. George, P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems 90 (1997), 365-368. http://dx.doi.org/10.1016/S0165-0114(96)00207-2
    • V. Gregori, S. Romaguera, Some properties of fuzzy metric spaces, Fuzzy Sets and Systems 115 (2000), 485-489. http://dx.doi.org/10.1016/S0165-0114(98)00281-4
    • V. Gregori, S. Romaguera, On completion of fuzzy metric spaces, Fuzzy Sets and Systems 130 (2002), 399-404. http://dx.doi.org/10.1016/S0165-0114(02)00115-X
    • V. Gregori, S. Romaguera, Characterzing completable fuzzy metric spaces, Fuzzy Sets and Systems, to appear.
    • I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika 11 (1975), 326-334.
    • H.P.A. Künzi, Nonsymmetric distances and their associated topologies: About the origins of basic ideas in the area of asymmetric topology,...
    • D. Mihet, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems, to appear.
    • S. Salbany, Bitopological Spaces, Compactifications and Completions, Math. Monographs, no. 1, Dept. Math. Univ. Cape Town, 1974.
    • B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 314-334.
    • H. Sherwood, On the completion of probabilistic metric spaces, Z. Wahrsch. verw. Geb. 6 (1966), 62-64. http://dx.doi.org/10.1007/BF00531809

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno