Ir al contenido

Documat


Attractor of reaction-diffusion equations in Banach spaces

  • Valero, José [1]
    1. [1] Universidad CEU Cardenal Herrera

      Universidad CEU Cardenal Herrera

      Valencia, España

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 2, Nº. 1, 2001, págs. 77-98
  • Idioma: inglés
  • DOI: 10.4995/agt.2001.3017
  • Enlaces
  • Resumen
    • In this paper we prove first some abstract theorems on existence of global attractors for differential inclusions generated by w-dissipative operators. Then these results are applied to reaction-diffusion equations in which the Babach space Lp is used as phase space. Finally, new results concerning the fractal dimension of the global attractor in the space L2 are obtained. 

  • Referencias bibliográficas
    • A.V. Babin, M.I. Vishik, Attracteurs maximaux dans les équations aux dérivées partielles, in "Nonlinear Partial Differential Equations...
    • A.V. Babin, M.I. Vishik, Attractors of Evolution Equations, Nord-Holland, Amsterdam, 1992.
    • F. Balibrea, J. Valero, Estimates of dimension of attractors of reaction-diffusion equations in the nondifferentiable case, C.R. Acad. Sci.,...
    • F. Balibrea, J. Valero, On dimension of attractors of differential inclusions and reaction-diffusion equations, Discrete Cont. Dynam. Systems...
    • V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Editura Academiei, Bucuresti, 1976.
    • H. Brezis, Problèmes unilatéraux, J. Math. Pures Appl. 51 (1972), 1–168.
    • H. Brezis, Análisis Funcional, Alianza Editorial, Madrid, 1984. (Translated from Analyse Fonctionelle, Masson Editeur, Paris, 1983).
    • A.N. Carvalho, S.M. Oliva, A.L. Pereira, A. Rodriguez-Bernal, Attractors for parabolic problems with nonlinear boundary conditions, J. Math....
    • A.N. Carvalho, J.G. Ruas-Filho, Global attractors for parabolic problems in fractional power spaces, SIAM J. Math. Anal. 26 (1995), 415–427.
    • V.V. Chepyzhov, M.I. Vishik, Attractors of non-autonomous dynamical systems and their dimension, J. Math. Pures Appl. 73 (1994), 279–333.
    • M.G. Crandall, A. Pazy, Nonlinear evolution equations in Banach spaces, Israel J. Math. 11 (1972), 57–94.
    • L. Dung, Dissipativity and global attractors for a class of quasilinear parabolic systems, Commun. Partial Differential Equations 22 (1997),...
    • L. Dung, Global attractors and steady state solutions for a class of reaction-diffusion systems, J. Differential Equations 147 (1998), 1–29.
    • A. Eden, B. Michaux, J.M. Rakotoson, Doubly nonlinear parabolic-type equations as dynamical systems, J. Dynamics Differential Equations 3...
    • A. Eden, J.M. Rakotoson, Exponential attractors for a doubly nonlinear equation, J. Math. Anal. Appl. 185 (1994), 321–339.
    • M. Gobbino, M. Sardella, On the connectedness of attractors for dynamical systems, J. Differential Equations 133 (1997), 1–14.
    • J.K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surv. Mono. 25, AMS, Providence, 1988.
    • A. Haraux, Attractors of asymptotically compact processes and applications to nonlinear partial differential equations, Comm. Partial Differential...
    • S. Merino, On the existence of the compact global attractor for semilinear reaction-diffusion systems on ℝⁿ, J. Differential Equations 132...
    • V.S. Melnik, J. Valero, On attractors of multivalued semi-flows and differential inclusions, Set-Valued Analysis 6 (1998), 83–111.
    • R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988.
    • J. Valero, On evolutionary inclusion attractors in Banach spaces, Ukrain. Mat. Zh. 47 (1995), 602–610.
    • J. Valero, On locally compact attractors of dynamical systems, J. Math. Anal. Appl. 237 (1999), 43–54.
    • J. Valero, Attractors of parabolic equations without uniqueness, J. Dynamics Differential Equations 13 (2001).
    • B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Physica D 128 (1999), 41–52.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno