Ir al contenido

Documat


On topological sequence entropy of circle maps

  • Cánovas, José E. [1]
    1. [1] Universidad Politécnica de Cartagena

      Universidad Politécnica de Cartagena

      Cartagena, España

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 2, Nº. 1, 2001, págs. 1-7
  • Idioma: español
  • DOI: 10.4995/agt.2001.3010
  • Enlaces
  • Resumen
    • We classify completely continuous circle maps from the point of view of topological sequence entropy. This improves a result of Roman Hric.

  • Referencias bibliográficas
    • N. Franzová and J. Smítal, Positive sequence topological entropy characterizes chaotic maps, Proc. Amer. Math. Soc. 112 (1991), 1083–1086.
    • T. N. T. Goodman, Topological sequence entropy, Proc. London Math. Soc. 29 (1974), 331–350.
    • R. Hric, Topological sequence entropy for maps of the circle, Comment. Math. Univ. Carolin. 41 (2000), 53–59.
    • M. Kuchta, Characterization of chaos for continuous maps of the circle, Comment. Math. Univ. Carolinae 31 (1990), 383–390.
    • T. Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), 985–992.
    • L. Paganoni and P. Santambrogio, Chaos and sequence topological entropy for triangular maps, Grazer Math. Ber. 339 (1999), 279–290.
    • J. Smítal, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc. 297 (1986), 269–282.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno