Ir al contenido

Documat


Functorial comparisons of bitopology with topology and the case for redundancy of bitopology in lattice-valued mathematics

  • Rodabaugh, S.E. [1]
    1. [1] Youngstown State University

      Youngstown State University

      City of Youngstown, Estados Unidos

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 9, Nº. 1, 2008, págs. 77-108
  • Idioma: inglés
  • DOI: 10.4995/agt.2008.1871
  • Enlaces
  • Resumen
    • This paper studies various functors between (lattice-valued) topology and (lattice-valued) bitopology, including the expected “doubling” functor Ed : L-Top → L-BiTop and the “cross” functor E× : L-BiTop → L2-Top introduced in this paper, both of which are extremely well-behaved strict, concrete, full embeddings. Given the greater simplicity of lattice-valued topology vis-a-vis lattice-valued bitopology and the fact that the class of L2-Top’s is strictly smaller than the class of L-Top’s encompassing fixed-basis topology, the class of E×’s makes the case that lattice-valued bitopology is categorically redundant. As a special application, traditional bitopology as represented by BiTop is (isomorphic in an extremely well-behaved way to) a strict subcategory of 4-Top, where 4 is the four element Boolean algebra; this makes the case that traditional bitopology is a special case of a much simpler fixed-basis topology.

  • Referencias bibliográficas
    • J. Adámek, H. Herrlich, G. E. Strecker, Abstract And Concrete Categories: The Joy Of Cats, Wiley Interscience Pure and Applied Mathematics...
    • B. Banaschewski, G. C. L. Brümmer, K. A. Hardie, Biframes and bispaces, Proc. Symp. Categorical Algebra and Topology (Cape Town, 1981), Quaestiones...
    • J. Cerf, Groupes d’homotopie locaux et groupes d’homotopie mixtes des espaces bitopologiques: Définitions et propriétés, C. R. Acad. Sci....
    • J. Cerf, Groupes d’homotopie locaux et groupes d’homotopie mixtes des espaces bitopologiques: Presque n-locale connexion: Applications, C....
    • C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182–190. http://dx.doi.org/10.1016/0022-247X(68)90057-7
    • C. De Mitri, C. Guido, G-fuzzy topological spaces and subspaces, Suppl. Rend. Circolo Matem. Palermo 29 (1992), 363–383.
    • C. De Mitri, C. Guido, Some remarks on fuzzy powerset operators, Fuzzy Sets and Systems 126 (2002), 241–251. http://dx.doi.org/10.1016/S0165-0114(01)00024-0
    • C. De Mitri, C. Guido, R. E. Toma, Fuzzy topological properties and hereditariness, Fuzzy Sets and Systems 138 (2003), 127–147. http://dx.doi.org/10.1016/S0165-0114(02)00368-8
    • J. T. Denniston, S. E. Rodabaugh, Functorial relationships between lattice-valued topology and topological systems, in submission.
    • A. Frascella, C. Guido, Structural lattices and ground categories of L-sets, in [24], 53–54.
    • A. Frascella, C. Guido, Topological categories of L-sets and (L,M)-topological spaces on structured lattices; in [13], 50.
    • J. A. Goguen, The fuzzy Tychonoff theorem, J. Math. Anal. Appl. 43 (1973), 734–742. http://dx.doi.org/10.1016/0022-247X(73)90288-6
    • S. Gottwald, P. H´ajek, U. H¨ohle, E. P. Klement, eds, Fuzzy Logics And Related Structures: Abstracts, 26th Linz Seminar On Fuzzy Set Theory,...
    • C. Guido, The subspace problem in the traditional point set context of fuzzy topology, in [26], 351–372.
    • C. Guido, Powerset operators based approach to fuzzy topologies on fuzzy sets, Chapter 15 in [47], 401–413.
    • J. Gutiérrez García, S. E. Rodabaugh, Order-theoretic, topological, categorical redundancies of interval-valued sets, grey sets, vague sets,...
    • U. Höhle, Many Valued Topology And Its Applications to Fuzzy Subsets, (Kluwer Academic Publishers, Boston/Dordrecht/London, 2001). http://dx.doi.org/10.1007/978-1-4615-1617-0
    • U. Höhle, E. P. Klement, eds, Nonclassical Logics And Their Applications, Theory and Decision Library—Series B: Mathematical and Statistical...
    • U. Höhle, S. E. Rodabaugh, eds, Mathematics Of Fuzzy Sets: Logic, Topology, And Measure Theory, The Handbooks of Fuzzy Sets Series, Volume...
    • U. Höhle, A. Sostak, Axiomatic foundations of fixed-basis fuzzy topology, Chapter 3 in [19], 123–272.
    • P. T. Johnstone, Stone Spaces, (Cambridge University Press, Cambridge, 1982).
    • J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. 13:3 (1963), 71–89. http://dx.doi.org/10.1112/plms/s3-13.1.71
    • E. P. Klement, R. Mesiar, E. Pap, Triangular Norms, Trends in Logic, Studia Logica Library, Volume 8 (Kluwer Academic Publishers, Dordrecht/Boston/London,...
    • E. P. Klement, E. Pap, eds, Mathematics of Fuzzy Systems: Abstracts, 25th Linz Seminar On Fuzzy Set Theory, February 2004, Bildungszentrum...
    • R. Kopperman, J. D. Lawson, Bitopological and topological ordered k-spaces, Topology and its Applications 146–147 (2005), 385–396.
    • W. Kotzé, ed, Special Issue, Quaestiones Mathematicae 20(3) (1997).
    • S. S. Kumar, Weakly continuous mappings in fuzzy bitopological spaces, Proc. First Tamilnadu Science Congress Tiruchirappalli (1992), 1–7.
    • S. Mac Lane, Categories for the Working Mathematician (Springer-Verlag, Berlin), 1971. http://dx.doi.org/10.1007/978-1-4612-9839-7
    • MathSciNet: Mathematical Reviews On The Web, database under “Anywhere = bitopolog***”, 2006.
    • M. E. Abd El-Monsef, A. E. Ramadan, -Compactness in bifuzzy topological spaces, Fuzzy Sets and Systems 30 (1989), 165–173. http://dx.doi.org/10.1016/0165-0114(89)90078-X
    • L. Motchane, Sur la notion d’espace bitopologique et sur les espaces de Baire, C. R. Acad. Sci. Paris 244(1957), 3121–3124.
    • L. Motchane, Sur la caract´erisation des espaces de Baire, C. R. Acad. Sci. Paris 246 (1958), 215–218.
    • C. J. Mulvey, M. Nawaz, Quantales: quantal sets, Chapter VII in [18], 159–217.
    • A. Pultr, S. E. Rodabaugh, Lattice-valued frames, functor categories, and classes of sober spaces, Chapter 6 in [47], pp. 153–187.
    • A. Pultr, S. E. Rodabaugh, Category theoretic properties of chain-valued frames: Part I: categorical and presheaf theoretic foundations, Fuzzy...
    • S. E. Rodabaugh, Point-set lattice-theoretic topology, Fuzzy Sets and Systems 40 (1991), 297–345. http://dx.doi.org/10.1016/0165-0114(91)90164-L
    • S. E. Rodabaugh, Categorical frameworks for Stone representation theorems, Chapter 7 in [48], 178-231.
    • S. E. Rodabaugh, Applications of localic separation axioms, compactness axioms, representations, and compactifications to poslat topological...
    • S. E. Rodabaugh, Powerset operator based foundation for point-set lattice-theoretic (poslat) fuzzy set theories and topologies, in [26], 463–530.
    • S. E. Rodabaugh, Powerset operator foundations for poslat fuzzy set theories and topologies, Chapter 2 in [19], 91–116.
    • S. E. Rodabaugh, Categorical foundations of variable-basis fuzzy topology, Chapter 4 in [19], 273–388.
    • S. E. Rodabaugh, Separation axioms: representation theorems, compactness, and compactifications, Chapter 7 in [19], 481–552.
    • S. E. Rodabaugh, Fuzzy real lines and dual real lines as poslat topological, uniform, and metric ordered semirings with unity, Chapter 10...
    • S. E. Rodabaugh, Axiomatic foundations for uniform operator quasi-uniformities, Chapter 7 in [47], 199–233.
    • S. E. Rodabaugh, Relationship of algebraic theories to powersets over objects in Set and Set × C, to appear.
    • S. E. Rodabaugh, Relationship of algebraic theories to powerset theories and fuzzy topological theories for lattice-valued mathematics, International...
    • S. E. Rodabaugh, E. P. Klement, eds, Topological And Algebraic Structures In Fuzzy Sets: A Handbook of Recent Developments in the Mathematics...
    • S. E. Rodabaugh, E. P. Klement, U. H¨ohle, eds, Application Of Category Theory To Fuzzy Sets, Theory and Decision Library—Series B: Mathematical...
    • K. I. Rosenthal, Quantales And Their Applications, Pitman Research Notes In Mathematics 234 (Longman, Burnt Mill, Harlow, 1990).
    • A. S. M. Abu Safiya, A. A. Fora, M. W. Warner, Compactness and weakly induced fuzzy bitopological spaces, Fuzzy Sets and Systems 62( 1994),...
    • R. Srivastava, M. Srivastava, On compactness in bifuzzy topological spaces, Fuzzy Sets and Systems 121 (2001), 285–292. http://dx.doi.org/10.1016/S0165-0114(00)00011-7
    • C. K. Wong, Fuzzy topology: product and quotient theorems, J. Math. Anal. Appl. 45 (1974), 512–521. http://dx.doi.org/10.1016/0022-247X(74)90090-0
    • L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno