Ir al contenido

Documat


Continuous extension in topological digital spaces

  • Melin, Erik [1]
    1. [1] Uppsala University

      Uppsala University

      Uppsala domkyrkoförs., Suecia

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 9, Nº. 1, 2008, págs. 51-66
  • Idioma: inglés
  • DOI: 10.4995/agt.2008.1869
  • Enlaces
  • Resumen
    • We give necessary and sufficient conditions for the existence of a continuous extension from a smallest-neighborhood space (Alexandrov space) X to the Khalimsky line. Using this result, we classify the subsets A  X such that every continuous function A ! Zbcan be extended to all of X. We also consider the more general case ofbmappings X ! Y between smallest-neighborhood spaces, and prove abdigital no-retraction theorem for the Khalimsky plane.

  • Referencias bibliográficas
    • P. Alexandrov, Diskrete R¨aume. Mat. Sb. 2 (1937), 501–519.
    • L. Boxer, Digitally continuous functions, Pattern Recognition Lett. 15 (1994), 833–839. http://dx.doi.org/10.1016/0167-8655(94)90012-4
    • U. Eckhardt and L. J. Latecki, Topologies for the digital spaces Z2 and Z3 Computer Vision and Image Understanding 90 (2003), 295–312. http://dx.doi.org/10.1016/S1077-3142(03)00062-6
    • G. T. Herman, Geometry of digital spaces, Applied and Numerical Harmonic Analysis. Birkhäuser Boston Inc., Boston, MA, 1998.
    • G. T. Herman and D. Webster, A topological proof of a surface tracking algorithm, Computer Vision, Graphics, and Image Processing 23 (1983),...
    • E. Khalimsky, Topological structures in computer science, J. Appl. Math. Simulation 1 (1987), 25–40.
    • E. Khalimsky, R. Kopperman and P. R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology Appl. 36 (1990), 1–17....
    • C. O. Kiselman, Digital jordan curve theorems, In G. Borgefors, I. Nystr¨om, and G. Sanniti di Baja, editors, Discrete Geometry for Computer...
    • C. O. Kiselman, Digital geometry and mathematical morphology. Lecture notes, Uppsala University, 2004. Available at www.math.uu.se/~kiselman.
    • Reinhard Klette, Topologies on the planar orthogonal grid, in 6th International Conference on Pattern Recognition (ICPR’02), volume II, pages...
    • T. Y. Kong, Topological adjacency relations on Zn,Theoret. Comput. Sci. 283 (2002), 3-28. http://dx.doi.org/10.1016/S0304-3975(01)00050-0
    • T. Y. Kong, The Khalimsky topologies are precisely those simply connected topologies on Zn whose connected sets include all 2n-connected sets...
    • T. Y. Kong, R. Kopperman and P. R. Meyer, A topological approach to digital topology, Amer. Math. Monthly 98 (1991), 901–917. http://dx.doi.org/10.2307/2324147
    • T. Y. Kong and A. Rosenfeld, Digital topology: Introduction and survey, Comput. Vision Graph. Image Process. 48 (1989), 357–393. http://dx.doi.org/10.1016/0734-189X(89)90147-3
    • R. Kopperman, Topological digital topology. In Ingela Nystr¨om, Gabriella Sanniti di Baja, and Stina Svensson, editors, DGCI, volume 2886...
    • V. A. Kovalevsky, Finite topology as applied to image analysis, Comput. Vision Graph. Image Process. 46 (1989), 141–161. http://dx.doi.org/10.1016/0734-189X(89)90165-5
    • E. Melin, How to find a Khalimsky-continuous approximation of a real-valued function, In Reinhard Klette and Jovisa Zunic, editors, Combinatorial...
    • E. Melin, Digital straight lines in the Khalimsky plane, Math. Scand. 96 (2005) 49–62.
    • E. Melin, Extension of continuous functions in digital spaces with the Khalimsky topology, Topology Appl. 153 (2005) 52–65. http://dx.doi.org/10.1016/j.topol.2004.12.004
    • R. E. Stong, Finite topological spaces, Trans. Amer. Math. Soc. 123 (1966) 325–340. http://dx.doi.org/10.1090/S0002-9947-1966-0195042-2

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno