Ir al contenido

Documat


The structure of the poset of regular topologies on a set

  • Alas, Ofelia T. [1] ; Wilson, Richard G. [2]
    1. [1] Universidade de São Paulo

      Universidade de São Paulo

      Brasil

    2. [2] Universidad Autónoma Metropolitana

      Universidad Autónoma Metropolitana

      México

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 12, Nº. 1, 2011, págs. 1-13
  • Idioma: inglés
  • DOI: 10.4995/agt.2011.1695
  • Enlaces
  • Resumen
    • We study the subposet E3(X) of the lattice L1(X) of all T1-topologies on a set X, being the collections of all T3 topologies on X, with a view to deciding which elements of this partially ordered set have and which do not have immediate predecessors. We show that each regular topology which is not R-closed does have such a predecessor and as a corollary we obtain a result of Costantini that each non-compact Tychonoff space has an immediate predecessor in E3. We also consider the problem of when an R-closed topology is maximal R-closed.

  • Referencias bibliográficas
    • O. T. Alas, S. Hern´andez, M. Sanchis, M. G. Tkachenko and R. G. Wilson, Adjacency in the partial orders of Tychonoff, regular and locally...
    • O. T. Alas, M. G. Tkachenko and R. G. Wilson, Which topologies have immediate predecessors in the poset of Hausdorff topologies?, Houston...
    • O. T. Alas and R. G. Wilson, Which topologies can have immediate successors in the lattice of T1-topologies?, Appl. Gen. Topol. 5, no. 2 (2004),...
    • M. Berri, J. Porter and R. M. Stephenson, A survey of minimal topological spaces, Proc. Kanpur Conference, 1968.
    • N. Carlson, Lower and upper topologies in the Hausdorff partial order on a fixed set, Topology Appl. 154 (2007), 619–624. http://dx.doi.org/10.1016/j.topol.2006.08.003
    • C. Costantini, On some questions about posets of topologies on a fixed set, Topology Proc. 32 (2008), 187–225.
    • R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
    • L. M. Friedler, M. Girou, D. H. Pettey and J. R. Porter, A survey of R-, U-, and CH-closed spaces, Topology Proc. 17 (1992), 71–96.
    • S. H. Hechler, Two R-closed spaces revisited, Proc. Amer. Math. Soc. 56 (1976), 303–309.
    • R. E. Larson and W. J. Thron, Covering relations in the lattice of T1-topologies, Trans. Amer. Math. Soc. 168 (1972), 101–111.
    • D. W. McIntyre and S. W. Watson, Finite intervals in the partial orders of zero-dimensional, Tychonoff and regular topologies, Topology Appl....
    • J. Porter, R. M. Stephenson and R. G. Woods, Maximal feebly compact spaces, Topology Appl. 52 (1993), 203–219. http://dx.doi.org/10.1016/0166-8641(93)90103-K
    • J. Porter and R. G. Woods, Extensions and Absolutes of Topological Spaces, Springer Verlag, New York, 1987.
    • C. T. Scarborough and A. H. Stone, Products of nearly compact spaces, Trans. Amer. Math. Soc. 124 (1966), 131–147. http://dx.doi.org/10.1090/S0002-9947-1966-0203679-7
    • R. M. Stephenson, Two R-closed spaces, Canadian J. Math. 24 (1972), 286–292. http://dx.doi.org/10.4153/CJM-1972-023-5
    • R. Valent and R. E. Larson, Basic intervals in the lattice of topologies, Duke Math. J. 379 (1972), 401–411. http://dx.doi.org/10.1215/S0012-7094-72-03948-8

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno