Ir al contenido

Documat


Hypercyclic abelian semigroup of matrices on Cn and Rn and k-transitivity (k ≥ 2)

  • Ayadi, Adlene [1]
    1. [1] University of Gafsa

      University of Gafsa

      Túnez

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 12, Nº. 1, 2011, págs. 35-39
  • Idioma: inglés
  • DOI: 10.4995/agt.2011.1699
  • Enlaces
  • Resumen
    • We prove that the minimal number of matrices on Cn required to forma hypercyclic abelian semigroup on Cn is n+1. We also prove that theaction of any abelian semigroup finitely generated by matrices on Cnor Rn is never k-transitive for k 2. These answer questions raised byFeldman and Javaheri.

  • Referencias bibliográficas
    • A. Ayadi and H. Marzougui, Dynamic of Abelian subgroups of GL(n, C): a structure Theorem, Geom. Dedicata 116 (2005), 111–127. http://dx.doi.org/10.1007/s10711-005-9007-2
    • A. Ayadi and H. Marzougui, Dense orbits for abelian subgroups of GL(n, C), Foliations 2005: World Scientific, Hackensack, NJ (2006), 47–69.
    • F. Bayart and E. Matheron, Dynamics of Linear Operators, Cambridge Tracts in Math., 179, Cambridge University Press, 2009. http://dx.doi.org/10.1017/CBO9780511581113
    • G. Costakis, D. Hadjiloucas and A. Manoussos, Dynamics of tuples of matrices, Proc. Amer. Math. Soc. 137, no. 3 (2009), 1025–1034. http://dx.doi.org/10.1090/S0002-9939-08-09717-7
    • G. Costakis, D. Hadjiloucas and A. Manoussos, On the minimal number of matrices which form a locally hypercyclic, non-hypercyclic tuple, J....
    • N. S. Feldman, Hypercyclic tuples of operators and somewhere dense orbits, J. Math. Anal. Appl. 346 (2008), 82–98. http://dx.doi.org/10.1016/j.jmaa.2008.04.027
    • M. Javaheri, Topologically transitive semigroup actions of real linear fractional transformations , J. Math. Anal. Appl. 368 (2010), 587–603....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno