Ir al contenido

Documat


Classification of separately continuous mappings with values in o-metrizable spaces

  • Karlova, Olena [1]
    1. [1] Chernivtsi National University

      Chernivtsi National University

      Ucrania

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 13, Nº. 2, 2012, págs. 167-178
  • Idioma: inglés
  • DOI: 10.4995/agt.2012.1627
  • Enlaces
  • Resumen
    • We prove that every vertically nearly separately continuous mapping defined on a product of a strong PP-space and a topological space and with values in a strongly o-metrizable space with a special stratification, is a pointwise limit of continuous mappings.

  • Referencias bibliográficas
    • T. Banakh, (Metrically) quarter-stratifiable spaces and their applications, Math. Stud. 18, no. 1 (2002), 10–28.
    • M. Burke, Borel measurability of separately continuous functions, Topology Appl. 129, no. 1 (2003), 29–65. http://dx.doi.org/10.1016/S0166-8641(02)00136-0
    • R. Engelking, General Topology. Revised and completed edition. Heldermann Verlag, Berlin (1989).
    • H. Hahn, Reelle Funktionen.1.Teil. Punktfunktionen., Leipzig: Academische Verlagsge- sellscheft M.B.H. (1932).
    • A. Kalancha and V. Maslyuchenko, Cech-Lebesgue dimension and Baire classification of vector-valued separately continuous mappings, Ukr. Math....
    • O. Karlova, Baire classification of mappings which are continuous in the first variable and of the functional class in the second one, Math....
    • O. Karlova, Baire and Lebesgue classification of vector-values and multi-valued mappings, PhD thesis (2006) (in Ukrainian).
    • O. Karlova, Separately continuous o-discrete mappings, Bull. of Chernivtsi Nat. Univ., Mathematics 314–315 (2006), 77–79 (in Ukrainian).
    • O. Karlova and V. Maslyuchenko, Separately continuous mappings with values in non locally convex spaces, Ukr. Math. J. 59, no. 12 (2007),...
    • O. Karlova and V. Mykhaylyuk, Weak local homeomorphisms and B-favorable spaces, Ukr. Math. J. 60, no. 9 (2008), 1189–1195 (in Ukrainian)....
    • K. Kuratowski, Quelques probémes concernant les espaces métriques non-séparables, Fund. Math. 25 (1935), 534–545.
    • H. Lebesgue, Sur l’approximation des fonctions, Bull. Sci. Math. 22 (1898), 278–287.
    • V. Maslyuchenko, Separately continuous mappings and K¨othe spaces, Doctoral thesis (1999) (in Ukrainian).
    • D. Montgomery, Non-separable metric spaces, Fund. Math. 25 (1935), 527–533.
    • W. Moran, Separate continuity and supports of measures, J. London Math. Soc. 44 (1969), 320–324. http://dx.doi.org/10.1112/jlms/s1-44.1.320
    • V. Mykhaylyuk, Baire classification of separately continuous functions and Namioka property, Ukr. Math. Bull. 5, no. 2 (2008), 203–218 (in...
    • W. Rudin, Lebesgue first theorem, Math. Analysis and Applications, Part B. Edited by Nachbin. Adv. in Math. Supplem. Studies 78. Academic...
    • O. Sobchuk, PP-spaces and Baire classification, International Conference on Functional Analysis and its Applications, dedicated to the 110th...
    • G. Vera, Baire mesurability of separately continuous functions, Quart. J. Math. Oxford 39, no. 2 (1988), 109–116. http://dx.doi.org/10.1093/qmath/39.1.109

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno