Ir al contenido

Documat


Compactification of closed preordered spaces

  • Minguzzi, E. [1]
    1. [1] University of Florence

      University of Florence

      Firenze, Italia

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 13, Nº. 2, 2012, págs. 207-223
  • Idioma: inglés
  • DOI: 10.4995/agt.2012.1630
  • Enlaces
  • Resumen
    • A topological preordered space admits a Hausdorff T2-preorder compactification if and only if it is Tychonoff and the preorder is represented by the family of continuous isotone functions. We construct the largest Hausdorff T2-preorder compactification for these spaces and clarify its relation with Nachbin’s compactification. Under local compactness the problem of the existence and identification of the smallest Hausdorff T2-preorder compactification is considered.

  • Referencias bibliográficas
    • R. Budic and R. K. Sachs, Causal boundaries for general relativistic spacetimes, J. Math. Phys. 15 (1974), 1302–1309. http://dx.doi.org/10.1063/1.1666812
    • T. H. Choe and Y. S. Park, Wallman’s type order compactification, Pacific J. Math. 82 (1979), 339–347. http://dx.doi.org/10.2140/pjm.1979.82.339
    • R. Engelking, General Topology, Berlin: Helderman Verlag (1989).
    • P. Fletcher and W. Lindgren, Quasi-uniform spaces, vol. 77 of Lect. Notes in Pure and Appl. Math., New York: Marcel Dekker, Inc. (1982).
    • J. L. Flores, The causal boundary of spacetimes revisited, Commun. Math. Phys. 276 (2007), 611–643. http://dx.doi.org/10.1007/s00220-007-0345-9
    • R. Geroch, E. H. Kronheimer and R. Penrose, Ideal points in spacetime, Proc. Roy. Soc. Lond. A 237 (1972), 545–567. http://dx.doi.org/10.1098/rspa.1972.0062
    • S. G. Harris, Universality of the future chronological boundary, J. Math. Phys. 39 (1998), 5427–5445. http://dx.doi.org/10.1063/1.532582
    • S.W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge: Cambridge University Press (1973). ttp://dx.doi.org/10.1017/CBO9780511524646
    • D. C. Kent, On the Wallman order compactification, Pacific J. Math. 118 (1985), 159–163. http://dx.doi.org/10.2140/pjm.1985.118.159
    • D. C. Kent, D. Liu and T. A. Richmond, On the Nachbin compactification of products of totally ordered spaces, Internat. J. Math. & Math....
    • D. C. Kent and T. A. Richmond, Separation properties of the Wallman ordered compactification, Internat. J. Math. & Math. Sci. 13 (1990),...
    • D. C. Kent and T. A. Richmond, A new ordered compactification, Internat. J. Math. & Math. Sci. 16 (1993), 117–124. http://dx.doi.org/10.1155/S0161171293000146
    • H.-P. A. K¨unzi, Minimal order compactifications and quasi-uniformities, Berlin: Akademie-Verlag, vol. Recent Developments of General Topology...
    • H.-P. A. K¨unzi, A. E. McCluskey and T. A. Richmond, Ordered separation axioms and the Wallman ordered compactification, Publ. Math. Debrecen...
    • D. M. Liu and D. C. Kent, Ordered compactifications and families of maps, Internat. J. Math. & Math. Sci. 20 (1997), 105–110. http://dx.doi.org/10.1155/S016117129700015X
    • T. McCallion, Compactifications of ordered topological spaces, Proc. Camb. Phil. Soc. 71 (1972), 463–473. http://dx.doi.org/10.1017/S030500410005074X
    • S. D. McCartan, Separation axioms for topological ordered spaces, Proc. Camb. Phil. Soc. 64 (1968), 965–973. http://dx.doi.org/10.1017/S0305004100043668
    • E. Minguzzi, The causal ladder and the strength of K-causality. II, Class. Quantum Grav. 25 (2008), 015010. http://dx.doi.org/10.1088/0264-9381/25/1/015010
    • E. Minguzzi, Normally preordered spaces and utilities, Order, to appear. http://dx.doi.org/10.1007/s11083-011-9230-4
    • E. Minguzzi, Quasi-pseudo-metrization of topological preordered spaces, Topol. Appl. 159 (2012), 2888–2898. http://dx.doi.org/10.1016/j.topol.2012.05.029
    • E. Minguzzi, Topological conditions for the representation of preorders by continuous utilities, Appl. Gen. Topol. 13 (2012), 81–89.
    • L. Nachbin, Topology and order, Princeton: D. Van Nostrand Company, Inc. (1965).
    • S. Nada, Studies on Topological Ordered Spaces, Ph.D. thesis, Southampton (1986).
    • R. Penrose, Conformal treatment of infinity, New York: Gordon and Breach, vol. Relativity, Groups and Topology, pages 563–584 (1964).
    • I. Rácz, Causal boundary of space-times, Phys. Rev. D 36 (1987), 1673–1675. http://dx.doi.org/10.1103/PhysRevD.36.1673
    • I. Rácz, Causal boundary for stably causal spacetimes, Gen. Relativ. Gravit. 20 (1988), 893–904. http://dx.doi.org/10.1007/BF00760089
    • T. A. Richmond, Posets of ordered compactifications, Bull. Austral. Math. Soc. 47 (1993), 59–72. http://dx.doi.org/10.1017/S0004972700012260
    • S. Scott and P. Szekeres, The abstract boundary: a new approach to singularities of manifolds, J. Geom. Phys. 13 (1994), 223–253. http://dx.doi.org/10.1016/0393-0440(94)90032-9
    • H. Seifert, The causal boundary of space-times, Gen. Relativ. Gravit. 1 (1971), 247–259. http://dx.doi.org/10.1007/BF00759536
    • L. B. Szabados, Causal boundary for strongly causal spacetimes, Class. Quantum Grav. 5 (1988), 121–134. http://dx.doi.org/10.1088/0264-9381/5/1/017
    • L. B. Szabados, Causal boundary for strongly causal spacetimes II, Class. Quantum Grav. 6 (1989), 77–91. http://dx.doi.org/10.1088/0264-9381/6/1/007
    • S. Willard, General topology, Reading: Addison-Wesley Publishing Company (1970).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno