Ir al contenido

Documat


On strongly reflexive topological groups

  • Chasco, M. J. [1] ; Martin-Peinador, E. [2]
    1. [1] Universidad de Navarra

      Universidad de Navarra

      Pamplona, España

    2. [2] Universidad Complutense de Madrid

      Universidad Complutense de Madrid

      Madrid, España

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 2, Nº. 2, 2001, págs. 219-226
  • Idioma: inglés
  • DOI: 10.4995/agt.2001.2151
  • Enlaces
  • Resumen
    • An Abelian topological group G is strongly reflexive if every closed subgroup and every Hausdorff quotient of G and of its dual group G⋀, is reflexive. In this paper we prove the following: the annihilator of a closed subgroup of an almost metrizable group is topologically isomorphic to the dual of the corresponding Hausdorff quotient, and an analogous statement holds for the character group of the starting group. As a consequence of this perfect duality, an almost metrizable group is strongly reflexive just if its Hausdorff quotients, as well as the Hausdorff quotients of its dual, are reflexive. The simplification obtained may be significant from an operative point of view.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno