Ir al contenido

Documat


Arnautov's problems on semitopological isomorphisms

  • Dikranjan, Dikran [1] Árbol académico ; Giordano Bruno, Anna [1] Árbol académico
    1. [1] Università di Udine
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 10, Nº. 1, 2009, págs. 85-119
  • Idioma: inglés
  • DOI: 10.4995/agt.2009.1789
  • Enlaces
  • Resumen
    • Semitopological isomorphisms of topological groups were introduced by Arnautov [2], who posed several questions related to compositions of semitopological isomorphisms and about the groups G (we call them Arnautov groups) such that for every group topology on G every semitopological isomorphism with domain (G, ) is necessarily open (i.e., a topological isomorphism). We propose a different approach to these problems by introducing appropriate new notions, necessary for a deeper understanding of Arnautov groups. This allows us to find some partial answers and many examples. In particular, we discuss the relation with minimal groups and non-topologizable groups.

  • Referencias bibliográficas
    • V. I. Arnautov, Semitopological isomorphisms of topological rings (Russian), Mathematical Investigations (1969) 4:2 (12), 3–16.
    • V. I. Arnautov, Semitopological isomorphisms of topological groups, Bul. Acad. S¸tiint¸e Repub. Mold. Mat. 2004 (2004), no. 1, 15–25.
    • S. Banach, Ueber metrische Gruppen, Studia Math. 3 (1931), 101–113.
    • L. Brown, Topologically complete groups, Proc. Amer. Math. Soc. 35 (1972), 593–600. http://dx.doi.org/10.1090/S0002-9939-1972-0308321-0
    • D. Dikranjan, Recent advances in minimal topological groups, Topology Appl. 85 (1998), no. 1–3, 53–91.
    • D. Dikranjan and A. Giordano Bruno, Semitopological isomomorphisms for generalized Heisenberg groups, work in progress.
    • D. Dikranjan and M. Megrelishvili, Relative minimality and co-minimality of subgroups in topological groups, Topology Appl., to appear.
    • D. Dikranjan, I. Prodanov and L. Stoyanov, Topological Groups: Characters, Dualities and Minimal Group Topologies, Pure and Applied Mathematics,...
    • D. Dikranjan and D. Shakhmatov, Selected topics from the structure theory of topological groups, in: E. Perl, Open Problems in Topology 2,...
    • D. Dikranjan and V. Uspenskij, Categorically compact topological groups, J. Pure Appl. Algebra 126 (1998), no. 1–3, 149–168.
    • D. Doıtchinov, Produits de groupes topologiques minimaux, Bull. Sci. Math. 97 (1972), no. 2, 59–64.
    • R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
    • L. Fuchs, Infinite abelian groups, vol. I, Academic Press New York and London, 1973.
    • A. Giordano Bruno, Semitopological homomorphisms, Rend. Semin. Mat. Univ. Padova 120 (2008), 79–126. http://dx.doi.org/10.4171/RSMUP/120-6
    • D. L. Grant, Topological groups which satisfy an open mapping theorem, Pacific J. Math. 68 (1977), 411–423. http://dx.doi.org/10.2140/pjm.1977.68.411
    • T. Husain, Introduction to topological groups, Saunders, Philadelphia, 1966.
    • H. Kowalski, Beitrage sur topologischen albegra, Math. Naschr. 11 (1954), 143–185.
    • G. Luk´acs, Hereditarily non-topologizable groups, arXiv:math/0603513v1 [math.GR].
    • M. Megrelishvili, Generalized Heisenberg groups and Shtern’s question, Georgian Math. J. 11 (2004), no. 4, 775–782.
    • H. Neumann, Varieties of groups, Springer-Verlag New York, Inc., New York, 1967, x+192 pp.
    • A. Yu. Ol′shanskii, A remark on a countable non-topologized group, Vestnik Moskov Univ. Ser. I Mat. Mekh. (1980), 103 (in Russian).
    • V. Pt´ak, Completeness and the open mapping theorem, Bull. Soc. Math. France 86 (1958), 41–74.
    • D. J. S. Robinson, A Course in the Theory of Groups, Springer-Verlag, Berlin, 1982. http://dx.doi.org/10.1007/978-1-4684-0128-8
    • S. Shelah, On a problem of Kurosh, Jonsson groups and applications, Word problems, II (Conf. on Decision Problems in Algebra, Oxford, 1976),...
    • M. Shlossberg, Minimality on Topological Groups and Heisenberg Type Groups, submitted.
    • R. M. Stephenson, Jr., Minimal topological groups, Math. Ann. 192 (1971), 193–195. http://dx.doi.org/10.1007/BF02052870
    • L. Sulley, A note on B- and Br-complete topological Abelian groups, Proc. Cambr. Phil. Soc. 66 (1969), 275–279. http://dx.doi.org/10.1017/S0305004100044960
    • A. D. Ta˘ımanov, Topologizable groups. II. (Russian) Sibirsk. Mat. Zh. 19 (1978), no. 5, 1201ˆu-1203, 1216. (English translation: Siberian...
    • M. G. Tkachenko, Completeness of topological groups (Russian), Sibirsk. Mat. Zh. 25 (1984), no. 1, 146–158.
    • M. G. Tkachenko, Some properties of free topological groups (Russian), Mat. Zametki 37 (1985), no. 1, 110–118, 139.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno