Ir al contenido

Documat


A generalized coincidence point index

  • Benkafadar, N.M. [1] ; Benkara-Mostefa, M.C. [1]
    1. [1] University of Constantine
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 6, Nº. 1, 2005, págs. 87-100
  • Idioma: inglés
  • DOI: 10.4995/agt.2005.1959
  • Enlaces
  • Resumen
    • The paper is devoted to build for some pairs of continuous single-valued maps a coincidence point index. The class of pairs (f, g) satisfies the condition that f induces an epimorphism of the Cech homology groups with compact supports and coefficients in the field of rational numbers Q. Using this concept one defines for a class of multi-valued mappings a fixed point degree. The main theorem states that if the general coincidence point index is different from {0}, then the pair (f, g) admits at least a coincidence point. The results may be considered as a generalization of the above Eilenberg-Montgomery theorems [12], they include also, known fixed-point and coincidence-point theorems for single-valued maps and multi-valued transformations.

  • Referencias bibliográficas
    • Y. G. Borisovitch, Topological characteristics and the investigation of solvability for nonlinear problems, Izvestiya VUZ’ov, Mathematics...
    • Y. G. Borisovitch, Topological characteristics of infinite-dimensional mappings and the solvability of nonlinear boundary value problems,...
    • K. Borsuk, Theory of retracts, Monografie Matematyczne 44 (Polska Academia NAUK, Warszawa, 1967).
    • K. Borsuk, A. Kosinski, On connections between the homology properties of a set and its frontiers, Bull. Acad. Pol. Sc., 4 (1956), 331–333.
    • E. G. Begle, The Vietoris mapping theorem for bicompact spaces, Ann. of Math. 2 (1950), 534–543. http://dx.doi.org/10.2307/1969366
    • J. Bryszewski, On a class of multi-valued vector fields in Banach spaces, Fund. Math. 2 (1977), 79–94.
    • N. M. Benkafadar, B. D. Gel’man, On some generalized local degrees, Topology Proceedings 25 summer 2000 ( 2002 ), 417–433.
    • N. M. Benkafadar, B. D. Gel’man, On a local degree of one class of multivalued vector fields in infinite-dimensional Banach spaces, Abstract...
    • A. Dold, Fixed point index and fixed point theorems for euclidean neighborhood retracts, Topology 4 (1965), 1–8. http://dx.doi.org/10.1016/0040-9383(65)90044-3
    • A. Dold, Lectures on Algebraic Topology, (Springer-Verlag, Berlin, 1972).
    • Z. Dzedzej, Fixed point index theory for a class of nonacyclic multivalued maps, Rospr. Math. 25, 3 (Warszawa, 1985).
    • S. Eilenberg, D. Montgomery, Fixed point theorems for multi-valued transformations, Amer. J. Math. 58 (1946), 214–222. http://dx.doi.org/10.2307/2371832
    • S. Eilenberg, N. Steenrod, Foundations of Algebraic Topology, (Princeton, 1952).
    • A. Granas, The Leray-Shauder index and fixed point theory for arbitrary ANR-s, Bull. Soc. Math. Fr. 100 (1972), 209–228.
    • L. Gorniewiecz, A. Granas, Some general theorems in coincidence Theory I., J. Math. pures et appl. 61 ( 1981 ), 361–373.
    • A. Granas, Sur la notion du degré topologique pour une certaine classe de transformations multivalentes dans des espaces de Banach, Bull....
    • A. Granas, J. W. Jaworowski, Some theorems on multi-valued maps of subsets of the Euclidean space, Bull. Acad. Polon. Sci. 6 ( 1965 ), 277–283.
    • L. Gorniewicz, Homological methods in fixed point theory of multi-valued maps, Dissert. Math. 129 ( Warszawa, 1976 ).
    • B. D. Gel’man, Topological characteristic for multi-valued mappings and fixed points, Dokl. Acad. Naouk 3 (1975), 524–527.
    • B. D. Gel ’man, Generalized degree for multi-valued mappings, Lectures notes in Math. 1520, ( 1992 ), 174–192.
    • S. Kakutani, A Generalization of Brouwer’s fixed point theorem, Duke Mathematical Journal, 8 (1941), 457–459. http://dx.doi.org/10.1215/S0012-7094-41-00838-4
    • Z. Kucharski, A coincidence index, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Et Phys. 4 ( 1976 ), 245–252.
    • Z. Kucharski, Two consequences of the coincidence index, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. et Phys. 6 ( 1976 ), 437–444.
    • K. Kuratowski, Topology, Vol. I, II, ( Academic Press New York And London 1966 )
    • W. Kryszewski, Topological and approximation methods of degree theory of set-valued maps, Dissert. Math. 336, ( Warszawa, 1994 ).
    • A. Lasota, Z.Opial, An approximation theorem for multi-valued mappings, Podst. Sterow. 1 (1971), 71–75.
    • M. Powers, Lefschetz fixed point Theorems for a new class of multi-valued maps, Pacific J. Math. 68 (1970), 619–630
    • Z. Siegberg, G. Skordev, Fixed point index and chain approximation, Pacific J. Math. 2 (1982), 455–486. http://dx.doi.org/10.2140/pjm.1982.102.455
    • E. H. Spanier, Algebraic Topology, (McGraw-Hill, 1966).
    • A. D. Wallace, A fixed point theorem for trees, Bulletin of American Mathematical Society, 47 (1941), 757–760. http://dx.doi.org/10.1090/S0002-9904-1941-07556-7
    • J. Warga, Optimal control of differential and functional equations, (Acad. Press, New York and London, 1975).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno