Ir al contenido

Documat


δ-closure, θ-closure and generalized closed sets

  • Cao, Jiling [1] ; Ganster, Maximilian [2] ; Reilly, Ivan L. [1] ; Steiner, Markus [2]
    1. [1] University of Auckland

      University of Auckland

      Nueva Zelanda

    2. [2] Graz University of Technology

      Graz University of Technology

      Graz, Austria

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 6, Nº. 1, 2005, págs. 79-86
  • Idioma: inglés
  • DOI: 10.4995/agt.2005.1964
  • Enlaces
  • Resumen
    • We study some new classes of generalized closed sets (in the sense of N. Levine) in a topological space via the associated δ-closure and θ-closure. The relationships among these new classes and existing classes of generalized closed sets are investigated. In the last section we provide an extensive and more or less complete survey on separation axioms characterized via singletons.

  • Referencias bibliográficas
    • J. Cao, M. Ganster and I. Reilly, On generalized closed sets, Topology & Appl. 123 (2002), 37-46. http://dx.doi.org/10.1016/S0166-8641(01)00167-5
    • J. Cao, M. Ganster and I. Reilly, Submaximality, extremal disconnectedness and generalized closed sets, Houston J. Math. 24 (1998), 681-688.
    • J. Cao, S. Greenwood and I.Reilly, Generalized closed sets: a unified approach, Applied General Topology 2 (2001), 179-189.
    • K. Dlaska and M. Ganster, S-sets and co-S-closed topologies, Indian J. Pure Appl. Math. 23 (1992), 731-737.
    • J. Dontchev, I. Arokiarani and K. Balachandran, On generalized δ-closed sets and almost weakly Hausdorff spaces, Q & A in General Topology...
    • J. Dontchev and M. Ganster, On δ-generalized closed sets and T3/4 spaces, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 17 (1996), 15-31.
    • J. Dontchev and H. Maki, On θ-generalized closed sets, Internat. J. Math. & Math. Sci. 22 (1999), 239-249. http://dx.doi.org/10.1155/S0161171299222399
    • W. Dunham, T1/2-spaces, Kyungpook Math. J. 17 (1977), 161-169.
    • D. Jankovic, On some separation axioms and θ-closure, Mat. Vesnik 32 (4) (1980), 439-449.
    • D. Jankovic and I. Reilly, On semi-separation properties, Indian J. Pure Appl. Math. 16 (1985), 957-964.
    • N. Levine, Generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo 19 (1970), 89-96. http://dx.doi.org/10.1007/BF02843888
    • S. N. Maheshwari and U. Tapi, Feebly T1-spaces, An. Univ. Timisoara Ser. Stiint. Mat 16 (1978), no.2, 173-177.
    • T. Soundararajan, Weakly Hausdorff spaces and the cardinality of topological spaces, General Topology and its Relations to Modern Analysis...
    • M. Steiner, Verallgemeinerte abgeschlossene Mengen in topologischen Räumen, Master Thesis, Graz University of Technology, 2003.
    • N.V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl. 78 (2) (1968), 103-118.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno