Ir al contenido

Documat


On density and π-weight of Lp(βN,R, μ)

  • Iurato, Giuseppe [1]
    1. [1] University of Palermo

      University of Palermo

      Palermo, Italia

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 13, Nº. 1, 2012, págs. 33-38
  • Idioma: inglés
  • DOI: 10.4995/agt.2012.1636
  • Enlaces
  • Resumen
    • The new topological concept of selective separability is able to give some estimates for density and π-weight of the Lebesgue space Lp(βN,R, μ) with 1 ≤ p < +∞. In particular, we deduce a purely topological proof of the non-separability of such a space.

  • Referencias bibliográficas
    • C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis, Springer-Verlag, Berlin, 2006.
    • A.V. Arkhangel’skii, Topological Function Spaces, Kluwer Academic Publishers, Dordrecht, 1992.
    • A. Bella, M. Bonanzinga, M. V. Matveev and V. V. Tkachuck, Selective separability: general facts and behaviour in countable spaces, Topology...
    • N. Bourbaki, Intégration, Chapitres I-IX, Hermann, Paris, 1952–1969.
    • N. Dunford and J. T. Schwartz, Linear Operators, Part I, John Wiley and Sons, New York, 1976.
    • R. Engelking, General Topology, Polish Scientific Publishers, Warszawa, 1977.
    • I. Juhász, Cardinal Functions in Topology - Ten Years Later, Mathematisch Centrum, Amsterdam, 1983.
    • A. A. Kirillov and A. D. Gvishiani, Theorems and Problems in Functional Analysis, Springer-Verlag, New York-Berlin, 1982 (Italian edition:...
    • A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis, Dover Publications, Inc., New York, 1970.
    • G. Letta, Teoria elementare dell’integrazione, Boringhieri, Torino, 1976.
    • V. I. Ponomarev, On spaces co-absolute with metric spaces, Russian Math. Surveys 21, no. 4 (1966), 87–114. http://dx.doi.org/10.1070/RM1966v021n04ABEH004168
    • M. Reed and B. Simon, Methods of Modern Mathematical Physics, vol. I, revised and enlarged edition, Academic Press, New York, 1980.
    • W. Rudin, Real and Complex Analysis, MacGraw-Hill, Ljubljana, 1970.
    • M. Scheepers, Combinatorics of open covers VI: selectors for sequences of dense sets, Quaest. Math. 22 (1999), 109–130. http://dx.doi.org/10.1080/16073606.1999.9632063
    • L. A. Steen and J. A. Seebach, Counterexamples in Topology, Holt, Rinehart and Winston, Inc., New York, 1970.
    • A. Tesei, Istituzioni di Analisi Superiore, Bollati Boringhieri, Torino, 1997.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno