Ir al contenido

Documat


An operation on topological spaces

  • Arhangelskii, A.V. [1]
    1. [1] Ohio University

      Ohio University

      Township of Athens, Estados Unidos

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 1, Nº. 1, 2000, págs. 13-28
  • Idioma: inglés
  • DOI: 10.4995/agt.2000.3021
  • Enlaces
  • Resumen
    • A (binary) product operation on a topological space X is considered. The only restrictions are that some element e of X is a left and a right identity with respect to this multiplication, and that certain natural continuity requirements are satisfied. The operation is called diagonalization (of X). Two problems are considered: 1. When a topological space X admits such an operation, that is, when X is diagonalizable? 2. What are necessary conditions for diagonalizablity of a space (at a given point)? A progress is made in the article on both questions. In particular, it is shown that certain deep results about the topological structure of compact topological groups can be extended to diagonalizable compact spaces. The notion of a Moscow space is instrumental in our study.

  • Referencias bibliográficas
    • Arhangel'skii, A.V.Functional tightness, Q-spaces, and -embeddings.Commentationes Mathematicae Universitatis Carolinae, Vol. 24, No. 1...
    • Arhangel'skii, A.V.On bicompacta hereditarily satisfying Souslin's condition. Tightness and free sequences. Soviet Mathematics Doklady,...
    • Arhangel'skii, A.V.Topological Function Spaces.Kluwer Academic Publishers, 1992.
    • Arhangel'skii, A.V.Topological groups and C-embeddings.Submitted, 1999.
    • Arhangel'skii, A.V.On a theorem of W.W. Comfort and K.A. Ross.Commentationes Mathematicae Universitatis Carolinae, Vol. 40, No. 1 (1999),...
    • Arhangel'skii, A.V.Moscow spaces, Pestov-Tkachenko problem, and C-embeddings.To appear in Commentationes Mathematicae Universitatis Carolinae.
    • Arhangel'skii, A.V. and V.I. Ponomarev.Fundamentals of General Topology in Problems and Exercises.D. Reidel Publishing Co., Dordrecht-Boston,...
    • van Douwen, E.Homogeneity of βG if G is a topological group.Colloquium Mathematicum, Vol. 41 (1979), pp. 193–199.
    • Engelking, R.General Topology.PWN, Warszawa, 1977.
    • Glicksberg, I.Stone-Čech compactifications of products.Transactions of the American Mathematical Society, Vol. 90 (1959), pp. 369–382.
    • Hernandez, S., Sanchis, M., and M.G. Tkachenko.Bounded sets in spaces and topological groups.Topology and its Applications, Vol. 101, No....
    • Hušek, M.The Hewitt realcompactification of a product.Commentationes Mathematicae Universitatis Carolinae, Vol. 11 (1970), pp. 393–395.
    • Reznichenko, E.A., and V.V. Uspenskij.Pseudocompact Maltsev spaces.Topology and its Applications, Vol. 86 (1998), pp. 83–104.
    • Tkachenko, M.G.The notion of ω-tightness and C-embedded subspaces of products.Topology and its Applications, Vol. 15 (1983), pp. 93–98.
    • Uspenskij, V.V.Topological groups and Dugundji spaces.Matematicheskii Sbornik, Vol. 180, No. 8 (1989), pp. 1092–1118.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno