Ir al contenido

Documat


Useful topologies and separable systems

  • Herden, G. [1] ; Pallack, A. [1]
    1. [1] Universität/GH Essen
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 1, Nº. 1, 2000, págs. 61-81
  • Idioma: inglés
  • DOI: 10.4995/agt.2000.3024
  • Enlaces
  • Resumen
    • Let X be an arbitrary set. A topology t on X is said to be useful if every continuous linear preorder on X is representable by a continuous real valued order preserving function. Continuous linear preorders on X are induced by certain families of open subsets of X that are called (linear) separable systems on X. Therefore, in a first step useful topologies on X will be characterized by means of (linear) separable systems on X. Then, in a second step particular topologies on X are studied that do not allow the construction of (linear) separable systems on X that correspond to non representable continuous linear preorders. In this way generalizations of the Eilenberg Debreu theorems which state that second countable or separable and connected topologies on X are useful and of the theorem of Estévez and Hervés which states that a metrizable topology on X is useful, if and only if it is second countable can be proved. 

  • Referencias bibliográficas
    • A.F. Beardon, J.C. Candeal, G. Herden, E. Indurain and G.B. Mehta, The non-existence of a utility function and the structure of non-representable...
    • T. Bewley, Existence of equilibria in economies with infinitely many commodities, Journal of Economic Theory 4 (1972), 514-540.
    • D. Bridges and G.B. Mehta, Representation of preference orderings, Springer, New York, 1995.
    • D.C.J. Burgess and M. Fitzpatrick, On separation axioms for certain types of topological spaces, Mathematical Proceedings of the Cambridge...
    • J.C. Candeal, E. Induráin, and G.B. Mehta, Some utility theorems on inductive limits of preordered topological spaces, Bulletin of the Australian...
    • J.C. Candeal, C. Hervés, and E. Induráin, Useful topologies on preordered metric spaces, Preprint, Universidad de Zaragoza, 1995.
    • J.C. Candeal, C. Hervés, and E. Induráin, Some results on representation and extension of preferences, Journal of Mathematical Economics 29...
    • J. Cigler and H.C. Reichel, Topologie, BI Hochschultaschenbücher (BI, Mannheim, 1986, second edition).
    • G. Debreu, Representation of a preference ordering by a numerical function, in: R. Thrall, C. Coombs and R. Davies (eds.), Decision Processes....
    • G. Debreu, Continuity properties of Paretian utility, International Economic Review 5 (1964), 285-293.
    • S. Eilenberg, Ordered topological spaces, American Journal of Mathematics 63 (1941), 39-45.
    • R. Engelking, General Topology (Warszawa, 1977, second edition).
    • M. Estévez and C. Hervés, On the existence of continuous preference orderings without utility representations, Journal of Mathematical Economics...
    • G. Herden, On the existence of utility functions II, Mathematical Social Sciences 18 (1989), 107-117.
    • G. Herden, Topological spaces for which every continuous total preorder can be represented by a continuous utility function, Mathematical...
    • G. Herden, On some equivalent approaches to mathematical utility theory, Mathematical Social Sciences 29 (1995), 19-31.
    • G. Herden and G.B. Mehta, Order, Topology and Utility, Preprint, Universität–GH Essen, 2000.
    • T. Husain, Introduction to Topological Groups, W.B. Saunders Company (Saunders, Philadelphia, 1966).
    • L. Jones, A competitive model of product differentiation, Econometrica 52 (1984), 507-530.
    • A. Mas-Colell, A model of equilibrium with differentiation, Journal of Mathematical Economics 2 (1975), 263-295.
    • A. Mas-Colell, The price equilibrium existence problem in topological vector lattices, Econometrica 54 (1986), 1039-2053.
    • G.B. Mehta, Existence of an order-preserving function on a normally preordered space, Bulletin of the Australian Mathematical Society 34 (1986),...
    • G.B. Mehta, Infinite dimensional Arrow-Hahn theorem, Preprint, University of Brisbane, 1989.
    • G.B. Mehta, Birkhoff- and Debreu separability, Oral communication, Essen-Brisbane (November 1999).
    • G.B. Mehta and P.K. Monteiro, Infinite dimensional utility representation theorems, Economic Theory 53 (1996), 169-173.
    • A. Milgram, Partially ordered sets, separating systems and inductiveness, in: Reports of a mathematical colloquium (second series, No. 1),...
    • A. Milgram, Partially ordered sets and topology, Reports of a Mathematical Colloquium Second Series (University of Notre Dame, 1940), 3-9.
    • P.K. Monteiro, Some results on the existence of utility functions on path connected spaces, Journal of Mathematical Economics 16 (1987), 147-156.
    • L. Nachbin, Topology and Order, Van Nostrand Reinhold (Van Nostrand, New York, 1965).
    • B. Peleg, Utility functions for partially ordered topological spaces, Econometrica 38 (1970), 93-96.
    • W. Shafer, Representations of preorders on normed spaces, Preprint, University of Southern California, 1984.
    • L. Steen and J. Seebach, Counterexamples in Topology, (Rinehart and Winston, New York, 1978, second edition).
    • E. Szpilrajn, Sur l'extension de l'ordre partial, Fundamenta Mathematica 16 (1930), 386-389.
    • P. Urysohn, Über die Mächtigkeit der zusammenhängenden Mengen, Mathem. Annalen 94 (1925), 262-295.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno