Ir al contenido

Documat


Fuzzy functions: a fuzzy extension of the category SET and some related categories

  • Höhle, Ulrich [1] ; Porst, Hans-E. [2] ; Sostak, Alexander P. [3]
    1. [1] University of Wuppertal

      University of Wuppertal

      Kreisfreie Stadt Wuppertal, Alemania

    2. [2] University of Bremen

      University of Bremen

      Kreisfreie Stadt Bremen, Alemania

    3. [3] University of Latvia

      University of Latvia

      Letonia

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 1, Nº. 1, 2000, págs. 115-127
  • Idioma: inglés
  • DOI: 10.4995/agt.2000.3028
  • Enlaces
  • Resumen
    • In research Works where fuzzy sets are used, mostly certain usual functions are taken as morphisms. On the other hand, the aim of this paper is to fuzzify the concept of a function itself. Namely, a certain class of L-relations F : X x Y -> L is distinguished which could be considered as fuzzy functions from an L-valued set (X,Ex) to an L-valued set (Y,Ey). We study basic properties of these functions, consider some properties of the corresponding category of L-valued sets and fuzzy functions as well as briefly describe some categories related to algebra and topology with fuzzy functions in the role of morphisms.

  • Referencias bibliográficas
    • G. Birkhoff, Lattice Theory, 3rd ed., AMS Providence, RI, 1967.
    • C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182–190.
    • G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, D.S. Scott, A Compendium of Continuous Lattices, Springer Verlag, Berlin, Heidelberg,...
    • J.A. Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18 (1967), 145–174.
    • J.A. Goguen, The fuzzy Tychonoff theorem, J. Math. Anal. Appl., 43 (1973), 737–742.
    • U. Höhle, Commutative, residuated l-monoids, In: Non-classical Logics and Their Applications to Fuzzy Subsets: A Handbook of the Mathematical...
    • U. Höhle, M-valued sets and sheaves over integral commutative cl-monoids, In: Applications of Category Theory to Fuzzy Sets, S.E. Rodabaugh,...
    • U. Höhle, L. Stout, Foundations of fuzzy sets, Fuzzy Sets and Syst., 40 (1991), 257–296.
    • U. Höhle, A. Sostak, Axiomatics of fixed-basis fuzzy topologies, In: Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, U. Höhle,...
    • C.V. Negoita, D.A. Ralescu, Application of Fuzzy Sets to System Analysis, John Wiley & Sons, New York, 1975.
    • A. Pultr, Fuzzy mappings and fuzzy sets, Comm. Math. Univ. Carolinae, 17 (1976), 441–459.
    • A. Pultr, Closed categories of fuzzy sets, Vorträge zur Automaten und Algorithmentheorie 16 (1976), 60–68.
    • A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512–517.
    • A. Sostak, On a concept of a fuzzy category, In: 14th Linz Seminar on Fuzzy Set Theory: Non-classical Logics and Applications, Linz, Austria,...
    • A. Sostak, Fuzzy categories versus categories of fuzzily structured sets: Elements of the theory of fuzzy categories, In: Mathematik-Arbeitspapiere,...
    • A. Sostak, On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Palermo, Ser II, 11 (1985), 89–103.
    • A. Sostak, Two decades of fuzzy topology: basic ideas, notions and results, Russian Math. Surveys, 44: 6 (1989), 125–186.
    • A. Sostak, Towards the concept of a fuzzy category, Acta Univ. Latviensis (ser. Math.), 562, (1991), 85–94.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno