Ir al contenido

Documat


Skew compact semigroups

  • Kopperman, Ralph D. [1] ; Robbie, Desmond [2]
    1. [1] City University of New York

      City University of New York

      Estados Unidos

    2. [2] University of Melbourne

      University of Melbourne

      Australia

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 4, Nº. 1, 2003, págs. 133-142
  • Idioma: inglés
  • DOI: 10.4995/agt.2003.2015
  • Enlaces
  • Resumen
    • Skew compact spaces are the best behaving generalization of compact Hausdorff spaces to non-Hausdorff spaces. They are those (X ; τ ) such that there is another topology τ* on X for which τ V τ* is compact and (X; τ ; τ*) is pairwise Hausdorff; under these conditions, τ uniquely determines τ *, and (X; τ*) is also skew compact. Much of the theory of compact T2 semigroups extends to this wider class. We show: A continuous skew compact semigroup is a semigroup with skew compact topology τ, such that the semigroup operation is continuous τ2→ τ. Each of these contains a unique minimal ideal which is an upper set with respect to the specialization order. A skew compact semigroup which is a continuous semigroup with respect to both topologies is called a de Groot semigroup. Given one of these, we show: It is a compact Hausdorff group if either the operation is cancellative, or there is a unique idempotent and S2 = S. Its topology arises from its subinvariant quasimetrics. Each *-closed ideal ≠ S is contained in a proper open ideal.

  • Referencias bibliográficas
    • P. Fletcher and W. F. Lindgren, Quasi-uniform Spaces, (Dekker, New York, 1982).
    • J. de Groot, An isomorphism principle in general topology Bull. Amer. Math. Soc. 73 (1967), 465-467. http://dx.doi.org/10.1090/S0002-9904-1967-11784-1
    • G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott, A Compendium of Continuous Lattices, (Springer-Verlag, Berlin,...
    • J. L. Kelley, General Topology, Van Nostrand, New York, 1955.
    • J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. 13 (1963), 71-89. http://dx.doi.org/10.1112/plms/s3-13.1.71
    • R. D. Kopperman, All topologies come from generalized metrics, Amer. Math. Monthly 95 (1988), 89-97. http://dx.doi.org/10.2307/2323060
    • R. D. Kopperman, Asymmetry and duality in topology, Topology and Appl. 66 (1995), 1-39. http://dx.doi.org/10.1016/0166-8641(95)00116-X
    • R. D. Kopperman, Lengths on semigroups and groups, Semigroup Forum 25 (1984), 345-360. http://dx.doi.org/10.1007/BF02573609
    • J. D. Lawson, Order and strongly sober compactifications, Topology and Category Theory in Computer Science, G. M. Reed, A. W. Roscoe and R....
    • L. Nachbin, Topology and Order, Van Nostrand, 1965.
    • D. Robbie and S. Svetlichny, An answer to A. D. Wallace's question about countably compact cancellative semigroups, Proc. Amer. Math....
    • S. Salbany, Bitopological Spaces, Compactifications and Completions, Math. Monographs 1 (University of Cape Town, 1974).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno