Ir al contenido

Documat


On pseudo-k-spaces

  • Miranda, Anna Maria [1]
    1. [1] Università di Salerno
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 9, Nº. 2, 2008, págs. 177-184
  • Idioma: inglés
  • DOI: 10.4995/agt.2008.1797
  • Enlaces
  • Resumen
    • In this note a new class of topological spaces generalizing k-spaces, the pseudo-k-spaces, is introduced and investigated. Particular attention is given to the study of products of such spaces, in analogy to what is already known about k-spaces and quasi-k-spaces.

  • Referencias bibliográficas
    • D. E. Cohen, Spaces with weak topology, Quart. J. Math., Oxford 5 (1954), 77–80.
    • http://dx.doi.org/10.1093/qmath/5.1.77
    • C. H. Dowker, Topology of metric complexes, Amer. J. Math. 74 (1952), 555–577.
    • http://dx.doi.org/10.2307/2372262
    • R. Engelking, General Topology, Sigma Ser. Pure Math. 6 (Heldermann, Berlin, 1989).
    • T. Jech, Set Theory, Academic Press, 1978.
    • E. Michael, Local compactness and cartesian product of quotient maps and k-spaces, Ann. Inst. Fourier 18 (1968), 281–286.
    • http://dx.doi.org/10.5802/aif.300
    • K. Morita, Product of normal spaces with metric spaces, Math. Ann. 154 (1964), 365–382.
    • http://dx.doi.org/10.1007/BF01362570
    • J. Nagata, Quotient and bi-quotient spaces of M-spaces, Proc. Japan Acad. 45 (1969), 25–29.
    • http://dx.doi.org/10.3792/pja/1195520897
    • M. Sanchis, A note on quasi-k-spaces, Rend. Ist. Mat. Univ. Trieste Suppl. XXX (1999), 173–179.
    • J. H. C. Whitehead, A note on a theorem due to Borsuk, Bull. Amer. Math. Soc. 54 (1948), 1125–1132.
    • http://dx.doi.org/10.1090/S0002-9904-1948-09138-8

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno