Ir al contenido

Documat


On the continuity of factorizations

  • Comfort, W.W. [1] ; Gotchev, Ivan S. [2] ; Recoder-Nuñez, Luis [2]
    1. [1] Wesleyan University

      Wesleyan University

      Town of Middletown, Estados Unidos

    2. [2] Central Connecticut State University

      Central Connecticut State University

      Town of New Britain, Estados Unidos

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 9, Nº. 2, 2008, págs. 263-280
  • Idioma: inglés
  • DOI: 10.4995/agt.2008.1806
  • Enlaces
  • Resumen
    • Let {Xi : i ∈ I} be a set of sets, XJ :=Пi∈J Xi when Ø ≠ J ⊆ I; Y be a subset of XI , Z be a set, and f : Y → Z. Then f is said to depend on J if p, q ∈ Y , pJ = qJ ⇒ f(p) = f(q); in this case, fJ : πJ [Y ] → Z is well-defined by the rule f = fJ ◦ πJ|Y When the Xi and Z are spaces and f : Y → Z is continuous with Y dense in XI , several natural questions arise: (a) does f depend on some small J ⊆ I? (b) if it does, when is fJ continuous? (c) if fJ is continuous, when does it extend to continuous fJ : XJ → Z? (d) if fJ so extends, when does f extend to continuous f : XI → Z? (e) if f depends on some J ⊆ I and f extends to continuous f : XI → Z, when does f also depend on J? The authors offer answers (some complete, some partial) to some of these questions, together with relevant counterexamples. Theorem 1. f has a continuous extension f : XI → Z that depends on J if and only if fJ is continuous and has a continuous extension fJ : XJ → Z. Example 1. For ω ≤ k ≤ c there are a dense subset Y of [0, 1]k and f ∈ C(Y, [0, 1]) such that f depends on every nonempty J ⊆ k, there is no J ∈ [k]<ω such that fJ is continuous, and f extends continuously over [0, 1]k. Example 2. There are a Tychonoff space XI, dense Y ⊆ XI, f ∈ C(Y ), and J ∈ [I]<ω such that f depends on J, πJ [Y ] is C-embedded in XJ , and f does not extend continuously over XI .

  • Referencias bibliográficas
    • W. W. Comfort, A nonpseudocompact product space whose finite subproducts are pseu-docompact, Math. Annalen 170 (1967), 41–44.
    • http://dx.doi.org/10.1007/BF01362285
    • W. W. Comfort, I. Gotchev, and L. Recoder-Núñez, Dense C-embedded subspaces of products, Scientiae Mathematicae Japonicae 64, no. 3 (2006),...
    • W. W. Comfort and S. Negrepontis, The Theory of Ultrafilters, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, volume...
    • W. W. Comfort and S. Negrepontis, Chain Conditions in Topology, Cambridge Tracts in Mathematics, 79 (Cambridge University Press, Cambridge-New...
    • http://dx.doi.org/10.1017/CBO9780511897337
    • H. Corson, Normality in subsets of product spaces, Amer. J. Math. 81 (1959), 785–796.
    • http://dx.doi.org/10.2307/2372929
    • R. Engelking, On functions defined on Cartesian products, Fund. Math. 59 (1966), 221–231.
    • R. Engelking, General Topology, Sigma Series in Pure Mathematics, 6 (Heldermann Verlag, Berlin. Revised ed.,1989).
    • L. Gillman and M. Jerison, Rings of Continuous Functions (Van Nostrand, Princeton, 1960).
    • I. Glicksberg, Stone-Cech compactifications of products, Trans. Amer. Math. Soc. 90 (1959), 369–382.
    • G. Gruenhage and P. J. Szepticki, Fr´echet-Urysohn for finite sets, II, Topology Appl. 154 (2007), 2856`u2872.
    • R. Hodel, Cardinal functions I, In: Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, eds.), pp. 1–61, North-Holland, Amsterdam,...
    • M. Husek, Products as reflections, Comment. Math. Univ. Carolinae 13 (1972), 783–800.
    • M. Husek, Continuous mappings on subspaces of products, Symposia Mathematica, Istituto Nazionale di Alta Mathematica 17 (1976), 25–41.
    • M. Husek, Mappings from products, Topological structures II, In: Math. Centre Tracts, No. 115, pp. 131–145 (Math. Centrum, Amsterdam, 1979).
    • J. R. Isbell, Uniform spaces, Mathematical Surveys, vol. 12 (American Mathematical Society, Providence, R.I., 1964).
    • I. Juhász, Cardinal Functions in Topology—Ten Years Later, Math. Centre Tracts No. 123 (Math. Centrum, Amsterdam, 1980).
    • E. A. Michael, A quintuple quotient quest, General Topology and Appl. 2 (1972), 91–138.
    • http://dx.doi.org/10.1016/0016-660X(72)90040-2
    • A. Mishchenko, Several theorems on products of topological spaces, [In Russian], Fund. Math. 58 (1966), 259–284.
    • N. Noble, C-embedded subsets of products, Proc. Amer. Math. Soc. 31 (1972), 613–614.
    • N. Noble and M. Ulmer, Factoring functions on Cartesian products, Trans. Amer. Math. Soc. 163 (1972), 329–339.
    • http://dx.doi.org/10.1090/S0002-9947-1972-0288721-2
    • K. A. Ross and A. H. Stone, Products of separable spaces, Amer. Math. Monthly 71 (1964), 398–403.
    • http://dx.doi.org/10.2307/2313241
    • Milton Don Ulmer, Continuous Functions on Product Spaces, Ph.D. thesis, Wesleyan University, Middletown, Connecticut, USA, 1970.
    • M. Ulmer, C-embedded -spaces, Pacific J. Math. 46 (1973), 591–602.
    • http://dx.doi.org/10.2140/pjm.1973.46.591

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno