Ir al contenido

Documat


Continuous representability of interval orders

  • Candeal, Juan C. [1] ; Induráin, Esteban [2] ; Zudaire, M. [3]
    1. [1] Universidad de Zaragoza

      Universidad de Zaragoza

      Zaragoza, España

    2. [2] Universidad Pública de Navarra

      Universidad Pública de Navarra

      Pamplona, España

    3. [3] Instituto de Educación Secundaria Barañain
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 5, Nº. 2, 2004, págs. 213-230
  • Idioma: inglés
  • DOI: 10.4995/agt.2004.1971
  • Enlaces
  • Resumen
    • In the framework of the analysis of orderings whose associated indifference relation is not necessarily transitive, we study the structure of an interval order, and its representability through a pair of continuous real-valued functions. Inspired in recent characterizations of the representability of interval orders, we obtain new results concerning the existence of continuous real-valued representations. Classical results are also restated in a unified framework.

  • Referencias bibliográficas
    • J. Aczél and J. Dhombres, Functional equations in several variables, Cambridge University Press. (Cambridge, U.K. 1991).
    • G. Birkhoff, Lattice theory, (Third edition). American Mathematical Society. (Providence, RI. 1967).
    • G. Bosi , J. C. Candeal , E. Induráin, E. Olóriz and M. Zudaire, Numerical representations of interval orders, Order 18 (2001), 171-190. http://dx.doi.org/10.1023/A:1011974420295
    • G. Bosi and R. Isler, Representing preferences with nontransitive indifference by a single real-valued function, Journal of Mathematical Economics...
    • Bridges D. S., Representing interval orders by a single real-valued function, Journal of Economic Theory 36 (1985), 149-155. http://dx.doi.org/10.1016/0022-0531(85)90083-3
    • D. S. Bridges and G. B.Mehta, Representations of preference orderings, Springer-Verlag. (Berlin. 1995). http://dx.doi.org/10.1007/978-3-642-51495-1
    • J. C. Candeal and E. Induráin, Sobre caracterizaciones topológicas de la representabilidad de cadenas mediante funciones de utilidad, Revista...
    • J. C. Candeal and E. Induráin, Utility functions on chains, Journal of Mathematical Economics 22 (1993), 161-168. http://dx.doi.org/10.1016/0304-4068(93)90045-M
    • J. C. Candeal and E. Induráin, Lexicographic behaviour of chains, Archiv der Mathematik 72 (1999), 145-152. http://dx.doi.org/10.1007/s000130050315
    • J. C. Candeal and E. Induráin, and M. Zudaire, Numerical representability of semiorders, Mathematical Social Sciences 43 (2002), 61-77. http://dx.doi.org/10.1016/S0165-4896(01)00082-8
    • A. Chateauneuf, Continuous representation of a preference relation on a connected topological space, Journal of Mathematical Economics 16...
    • G. Debreu, Representation of a preference ordering by a numerical function, In Decision processes, edited by R. Thrall, C. Coombs and R. Davies....
    • G. Debreu, Continuity properties of Paretian utility, International Economic Review 5 (1964), 285-293. http://dx.doi.org/10.2307/2525513
    • J. P. Doignon, A. Ducamp and J. C. Falmagne, On realizable biorders and the biorder dimension of a relation, Journal of Mathematical Psychology...
    • J. Dugundji, Topology, Allyn and Bacon. (Boston. 1966).
    • S. Eilenberg, Ordered topological spaces, American Journal of Mathematics 63 (1941), 39-45. http://dx.doi.org/10.2307/2371274
    • P. C. Fishburn, Intransitive indifference with unequal indifference intervals, Journal of Mathematical Psychology 7 (1970), 144-149. http://dx.doi.org/10.1016/0022-2496(70)90062-3
    • P. C. Fishburn, Intransitive indifference in preference theory: a survey, Operations Research 18 (2) (1970), 207-228. http://dx.doi.org/10.1287/opre.18.2.207
    • P. C. Fishburn, Utility theory for decision-making, Wiley, (New York. 1970).
    • P. C. Fishburn, Interval representations for interval orders and semiorders, Journal of Mathematical Psychology 10 (1973), 91-105. http://dx.doi.org/10.1016/0022-2496(73)90007-2
    • P. C. Fishburn, Interval orders and interval graphs, (Wiley, New York. 1985).
    • S. H. Gensemer, On numerical representations of semiorders, Discussion Paper n. 5. Department of Economics. University of Syracuse, (N.Y....
    • S. H. Gensemer, On relationships between numerical representations of interval orders and semiorders, Journal of Economic Theory 43 (1987),...
    • S. H. Gensemer, Continuous semiorder representations, Journal of Mathematical Economics 16 (1987), 275-289. http://dx.doi.org/10.1016/0304-4068(87)90013-9
    • S. H. Gensemer, On numerical representations of semiorders, Mathematical Social Sciences 15 (3) (1988), 277-286. http://dx.doi.org/10.1016/0165-4896(88)90012-1
    • L. Gillman and M. Jerison, Rings of continuous functions, Springer-Verlag. (New York. 1960). http://dx.doi.org/10.1007/978-1-4615-7819-2
    • E. Olóriz, J. C. Candeal and E. Induráin, Representability of interval orders, Journal of Economic Theory 78 (1) (1998), 219-227. http://dx.doi.org/10.1006/jeth.1997.2346

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno