Ir al contenido

Documat


A fuzzification of the category of M-valued L-topological spaces

  • Kubiak, Tomasz [1] ; Sostak, Alexander P. [2]
    1. [1] Adam Mickiewicz University in Poznań

      Adam Mickiewicz University in Poznań

      Poznań, Polonia

    2. [2] University of Latvia

      University of Latvia

      Letonia

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 5, Nº. 2, 2004, págs. 137-154
  • Idioma: inglés
  • DOI: 10.4995/agt.2004.1965
  • Enlaces
  • Resumen
    • A fuzzy category is a certain superstructure over an ordinary category in which ”potential” objects and ”potential” morphisms could be such to a certain degree. The aim of this paper is to introduce a fuzzy category FTOP(L,M) extending the category TOP(L,M) of M-valued L- topological spaces which in its turn is an extension of the category TOP(L) of L-fuzzy topological spaces in Kubiak-Sostak’s sense. Basic properties of the fuzzy category FTOP(L,M) and its objects are studied.

  • Referencias bibliográficas
    • U.Höhle, Uppersemicontinuous fuzzy sets and applications, J. Math. Anal. Appl. 78 (1980), 659-673. http://dx.doi.org/10.1016/0022-247X(80)90173-0
    • U.Höhle, Commutative, residuated l-monoids, In: Non-classical Logics and Their Applications to Fuzzy Subsets: A Handbook of the Mathematical...
    • U. Höhle, M-valued sets and sheaves over integral commutative cl-monoids, In: Applications of Category Theory to Fuzzy Sets., S.E. Rodabaugh,...
    • U. Höhle and A. Sostak, Axiomatic foundations of fixed-basis fuzzy topology, In: Mathematics of Fuzzy Sets: Logics, Topology and Measure Theory,pp....
    • T. Kubiak, On Fuzzy Topologies, Ph.D. Thesis, Adam Mickiewicz University, Poznan, Poland, 1985.
    • T. Kubiak and A. Sostak, Foundations of the theory of (L,M)-fuzzy topologies, Part I, to appear.
    • T. Kubiak and A. Sostak, Foundations of the theory of (L,M)-fuzzy topologies, Part II, to appear.
    • S. E. Rodabaugh, Powerset operator based foundations for point-set lattice theoretic (poslat) fuzzy set theories and topologies, Quaest. Math....
    • A. Sostak, On a fuzzy topological structure, Rend. Matem. Palermo, Ser II, 11 (1985), 89-103.
    • A. Sostak, Two decades of fuzzy topology, Russian Mathematical Surveys, 44:6 (1989), 125-186. http://dx.doi.org/10.1070/RM1989v044n06ABEH002295
    • A. Sostak, On a concept of a fuzzy category, In: 14th Linz Seminar on Fuzzy Set Theory: Non-classical Logics and Applications. Linz, Austria,...
    • A. Sostak, Fuzzy categories versus categories of fuzzily structured sets: Elements of the theory of fuzzy categories, In: Mathematik-Arbeitspapiere,...
    • A. Sostak, Fuzzy categories related to algebra and topology, Tatra Mount. Math. Publ. 16:1, (1999), 159-186.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno