Ir al contenido

Documat


Relative Collectionwise Normality

  • Grabner, Eliser [1] ; Grabner, Gary [1] ; Miyazaki, Kazumi [3] ; Tartir, Jamal [2]
    1. [1] Slippery Rock University

      Slippery Rock University

      Borough of Slippery Rock, Estados Unidos

    2. [2] Youngstown State University

      Youngstown State University

      City of Youngstown, Estados Unidos

    3. [3] Osaka Elector-Communication University
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 5, Nº. 2, 2004, págs. 199-212
  • Idioma: inglés
  • DOI: 10.4995/agt.2004.1970
  • Enlaces
  • Resumen
    • In this paper we study properties of relative collectionwise normality type based on relative properties of normality type introduced by Arhangel’skii and Genedi. Theorem Suppose Y is strongly regular in the space X. If Y is paracompact in X then Y is collectionwise normal in X. Example A T2 space X having a subspace which is 1− paracompact in X but not collectionwise normal in X. Theorem Suppose that Y is s- regular in the space X. If Y is metacompact in X and strongly collectionwise normal in X then Y is paracompact in X.

  • Referencias bibliográficas
    • A. Arhangel’skii, “From classic topological invariants to relative topological properties”, Scientiae Math. Japonicae 55 No 1 (2002), 153-201.
    • A. Arhangel’skii and H Genedi, “Beginnings of the theory of relative topological properties”, Gen. Top. Spaces and Mappings (MGU, Moscow,...
    • A. Arhangel’skii and H Genedi, “Position of subspaces in spaces: relative versions of compactness, Lindel¨of properties, and separation axioms”,...
    • A. Arhangel’skii and I. Gordienko, “Relative symmetrizability and metrizability”, Comment. Math. Univ. Carol. 37 No 4 (1996), 757-774.
    • R. Engelking, “General Topology” (PWN, Warsaw, 1977).
    • I. Gordienko, “On Relative Properties of Paracompactness and Normality Type”, Moscow Univ. Nath. Bul. 46 No. 1 (1991), 31-32.
    • E. Grabner, G. Grabner and K. Miyazaki, “ Properties of relative metacompactness and paracompactness type”, Topology Proc. 25 (2000), 145-178.
    • K. Miyazaki, “On relative paracompactness and characterizations of spaces by relative topological properties”, Math. Japonica 50 (1999), 17-23.
    • J.C. Smith and L.L. Krajewski, “Expandability and collectionwise normality”, Trans. Amer. Math. Soc. 160 (1971), 437-451.
    • Y. Yasui, “Results on relatively countably paracompact spaces”, Q and A in Gen. Top. 17 (1999), 165-174.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno