Ir al contenido

Documat


Universal elements for some classes of spaces

  • Georgiou, D.N. [1] ; Iliadis, S.D. [1] ; Megaritis, A.C. [1]
    1. [1] University of Patras

      University of Patras

      Dimos Patras, Grecia

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 12, Nº. 2, 2011, págs. 193-211
  • Idioma: inglés
  • DOI: 10.4995/agt.2011.1652
  • Enlaces
  • Resumen
    • In the paper two dimensions, denoted by dm and Dm, are defined in the class of all Hausdorff spaces. The dimension Dm does not have the universality property in the class of separable metrizable spaces because the family of all such spaces X with Dm(X) < 0 coincides with the family of all totally disconnected spaces in which there are no universal elements. In we gave the dimension-like functions dmK,B E and DmK,B E, where K is a class of subsets, E a class of spaces and B a class of bases and we proved that in the families P(dm K, B E < K)and P(Dm K, B E < K) of all spaces X for which dm K,B E (X) < K and Dm K, B E (X) < K, respectively there exist universal elements. In this paper, we give some new dimension-like functions and define using these definitions classes of spaces in which there are universal elements.

  • Referencias bibliográficas
    • R. Engelking, Theory of dimensions, finite and infinite, Sigma Series in Pure Mathematics, 10. Heldermann Verlag, Lemgo, 1995. viii+401...
    • S. D. Iliadis, Universal spaces and mappings, North-Holland Mathematics Studies, 198. Elsevier Science B.V., Amsterdam, 2005. xvi+559...
    • D. N. Georgiou, S. D. Iliadis and A.C. Megaritis, Dimension-like functions and universality, Topology Appl. 155 (2008), 2196–2201. http://dx.doi.org/10.1016/j.topol.2007.05.024
    • A. K. O’Connor, A new approach to dimension, Acta Math. Hung. 55, no. 1-2 (1990), 83–95. http://dx.doi.org/10.1007/BF01951390
    • R. Pol, There is no universal totally disconnected space, Fund. Math. 79 (1973), 265–267.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno