Ir al contenido

Documat


Relations that preserve compact filters

  • Mynard, Frédéric [1]
    1. [1] Georgia Southern University

      Georgia Southern University

      Estados Unidos

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 8, Nº. 2, 2007, págs. 171-185
  • Idioma: inglés
  • DOI: 10.4995/agt.2007.1879
  • Enlaces
  • Resumen
    • Many classes of maps are characterized as (possibly multi-valued) maps preserving particular types of compact filters.

  • Referencias bibliográficas
    • A. V. Arhangel'skii, Bisequential spaces, tightness of products, and metrizability conditions in topological groups, Trans. Moscow Math....
    • B. Cascales and L. Oncina, Compactoid filters and USCO maps, Math. Analysis and Appl. 282 (2003), 826–845. http://dx.doi.org/10.1016/S0022-247X(03)00280-4
    • C. H. Cook and H. R. Fischer, Regular convergence spaces, Math. Ann. 174 (1967), 1–7. http://dx.doi.org/10.1007/BF01363119
    • S. Dolecki, Convergence-theoretic methods in quotient quest, Topology Appl. 73 (1996), 1–21. http://dx.doi.org/10.1016/0166-8641(96)00067-3
    • S. Dolecki, Active boundaries of upper semicontinuous and compactoid relations; closed and inductively perfect maps, Rostock. Math. Coll....
    • S. Dolecki, Convergence-theoretic characterizations of compactness, Topology Appl. 125 (2002), 393–417. http://dx.doi.org/10.1016/S0166-8641(01)00283-8
    • S. Dolecki, G. H. Greco, and A. Lechicki, Compactoid and compact filters, Pacific J. Math. 117 (1985), 69–98. http://dx.doi.org/10.2140/pjm.1985.117.69
    • S. Dolecki, G. H. Greco, and A. Lechicki, When do the upper Kuratowski topology (homeomorphically, Scott topology) and the cocompact topology...
    • S. Dolecki and F. Mynard, Cascades and multifilters, Topology Appl. 104 (2000), 53–65. [10] Z. Frolík, The topological product of two pseudocompact...
    • Z. Frolík, Sums of ultrafilters, Bull. Amer. Math. Soc. 73 (1967), 87–91. http://dx.doi.org/10.1090/S0002-9904-1967-11653-7
    • F. Jordan and F. Mynard, Espaces productivement de Fréchet, C. R. Acad. Sci. Paris, Ser I 335 (2002), 259–262.
    • H. J. Kowalsky, Limesräume und Kompletierung, Math. Nach. 12 (1954), 302–340. http://dx.doi.org/10.1002/mana.19540120504
    • E. Michael, A quintuple quotient quest, Gen. Topology Appl. 2 (1972), 91–138. http://dx.doi.org/10.1016/0016-660X(72)90040-2
    • F. Mynard, Products of compact filters and applications to classical product theorems, Topology Appl. 154, no. 4 (2007), 953–968. http://dx.doi.org/10.1016/j.topol.2006.09.016
    • B. J. Pettis, Cluster sets of nets, Proc. Amer. Math. Soc. 22 (1969), 386–391. http://dx.doi.org/10.1090/S0002-9939-1969-0276922-4
    • J. Vaughan, Products of topological spaces, Gen. Topology Appl. 8 (1978), 207–217. http://dx.doi.org/10.1016/0016-660X(78)90001-6
    • J. E. Vaughan, Total nets and filters, Topology (Proc. Ninth Annual Spring Topology Conf., Memphis State Univ., Memphis, Tenn., 1975), Lecture...
    • J. E. Vaughan, Products of topological spaces, Gen. Topology Appl. 8 (1978), 207–217. http://dx.doi.org/10.1016/0016-660X(78)90001-6

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno