Ir al contenido

Documat


On the Order Hereditary Closure Preserving Sum Theorem

  • Gong, Jianhua [1] ; Reilly, Ivan L. [2]
    1. [1] United Arab Emirates University

      United Arab Emirates University

      Emiratos Árabes Unidos

    2. [2] University of Auckland

      University of Auckland

      Nueva Zelanda

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 8, Nº. 2, 2007, págs. 267-272
  • Idioma: inglés
  • DOI: 10.4995/agt.2007.1892
  • Enlaces
  • Resumen
    • The main purpose of this paper is to prove the following two theorems, an order hereditary closure preserving sum theorem and an hereditary theorem: (1) If a topological property P satisfies (Σ′) and is closed hereditary, and if V is an order hereditary closure preserving open cover of X and each V ϵ V is elementary and possesses P, then X possesses P. (2) Let a topological property P satisfy (Σ′) and (β), and be closed hereditary. Let X be a topological space which possesses P. If every open subset G of X can be written as an order hereditary closure preserving (in G) collection of elementary sets, then every subset of X possesses P.

  • Referencias bibliográficas
    • S. P. Arya and M. K. Singal, More sum theorems for topological spaces, Pacific J. Math. 59 (1975), 1-7. http://dx.doi.org/10.2140/pjm.1975.59.1
    • S. P. Arya and M. K. Singal, On the closure preserving sum theorem, Proc. Amer. Math. Soc. 53 (1975), 518-522. http://dx.doi.org/10.1090/S0002-9939-1975-0383335-6
    • C. H. Dowker, Inductive-dimension of completely normal spaces, Quart. J. Math. 59 (1975) 1-7.
    • G. Gao, On the closure preserving sum theorems, Acta Math. Sinica 29 (1986), 58-62.
    • R. E. Hodel, Sum theorems for topological spaces, Pacific J. Math. 30 (1969), 59-65. http://dx.doi.org/10.2140/pjm.1969.30.59
    • Y. Katuta, A theorem On paracompactness of product spaces, Proc. Japan. Acad. 43 (1967), 615-618. http://dx.doi.org/10.3792/pja/1195521519

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno