Ir al contenido

Documat


Lower homomorphisms on additive generalized algebraic lattices

  • Chen, Xueyou [1] ; Deng, Zike [2]
    1. [1] Shandong University of Technology

      Shandong University of Technology

      China

    2. [2] Hunan University

      Hunan University

      China

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 8, Nº. 2, 2007, págs. 301-307
  • Idioma: inglés
  • DOI: 10.4995/agt.2007.1900
  • Enlaces
  • Resumen
    • In this paper, with the additivity property, the generalized way-below relation and the maximal system of subsets as tools, we prove that all lower homomorphisms between two additive generalized algebraic lattices form an additive generalized algebraic lattice, which yields the classical theorem: the function space between T0-topological spaces is also a T0-topological space with respect to the pointwise convergence topology.

  • Referencias bibliográficas
    • H. J. Bandelt, M-distributive lattices, Arch Math 39 (1982), 436–444. http://dx.doi.org/10.1007/BF01899545
    • X. Chen, Q. Li and Z. Deng, Stone Compactification on Additive Generalized Algebraic Lattice, Applied General Topology, to appear.
    • X. Chen, Q. Li, F. Long and Z. Deng, Tietze Extension Theorem on Additive Generalized Algebraic Lattice, Acta Mathematica Scientia (A)(in...
    • X. Chen, Z. Deng and Q. Li, Separation axioms on additive generalized algebraic lattice, J. of Shandong Univ. Technology (in Chinese) 20 (2006),...
    • Z. Deng, Generalized-continuous lattices I, J. Hunan Univ. 23, no. 3 (1996), 1–3. http://dx.doi.org/10.3109/09286589609071595
    • Z. Deng, Generalized-continuous lattices II, J. Hunan Univ. 23, no. 5 (1996), 1–3.
    • Z. Deng, Homomorphisms of generalized-continuous lattices, J. Hunan Univ. 26, no. 3 (1999), 1–4.
    • Z. Deng, Topological representation for generalized-algebraic lattices, (in W. Charles. Holland, edited: Ordered Algebraic structures, Algebra,...
    • Z. Deng, Additivity of generalized algebraic lattices and T0-topology, J. Hunan Univ. 29, no. 5 (2002), 1–3.
    • Z. Deng, Representation of strongly generalized-continuous lattices in terms of complete chains, J. Hunan Univ. 29, no. 3 (2002), 8–10.
    • D. Drake and W. J. Thron, On representation of an abstract lattice as the family of closed sets of a topological space, Tran. Amer. Math....
    • G. Gierz et al., A Compendium of Continuous Lattices, Berlin, Speringer- Verlag, 1980. http://dx.doi.org/10.1007/978-3-642-67678-9
    • P. T. Johnstone, Stone Spaces, Cambridge Univ press, Cambridge, 1983.
    • J. L. Kelly, General Topology, Van Nostrand Princeton, NJ, 1995.
    • D. Novak, Generalization of continuous posets, Tran. Amer. Math. Soc 272 (1982), 645–667. http://dx.doi.org/10.1090/S0002-9947-1982-0662058-8
    • S. Papert, Which distributive lattices are lattices of closed sets?, Proc. Cambridge. Phil. Soc. 55 (1959), 172–176. http://dx.doi.org/10.1017/S0305004100033855
    • Q. X. Xu, Construction of homomorphisms of M-continuous lattices, Tran. Amer. Math. Soc. 347 (1995),3167–3175.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno