Ir al contenido

Documat


The Alexandroff Duplicate and its subspaces

  • Caserta, Agata [2] ; Watson, Stephen [1]
    1. [1] York University (Canadá)

      York University (Canadá)

      Canadá

    2. [2] Seconda Università degli Studi di Napoli
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 8, Nº. 2, 2007, págs. 187-205
  • Idioma: inglés
  • DOI: 10.4995/agt.2007.1880
  • Enlaces
  • Resumen
    • We study some topological properties of the class of the Alexandroff duplicates and their subspaces. We give a characterization of metrizability and Lindel¨of properties of subspaces of the Alexandroff duplicate. This characterization clarifies the potential for finding Michael spaces among the subspaces of Alexandroff duplicates.

  • Referencias bibliográficas
    • P. S. Alexandroff and P. S. Urysohn, Mémoire sur les espaces topologiques compacts, Verh. Akad. Wetensch. Amsterdam, 14 (1929).
    • D. K. Burke and S. W. Davis, Subsets of ωω and generalized metric spaces, Pacific J. Math. 110(2) (1984), 273–281. http://dx.doi.org/10.2140/pjm.1984.110.273
    • H. H. Corson and E. Michael, Metrizability of certain countable unions, Illinois J. Math. 8 (1964), 351–360.
    • J. Dieudonné, Une généralisation des espace compact, J. de Math. Pures et Appl. 23 (1944), 65–76.
    • A. Dow, An empty class of nonmetric spaces, Proc. Amer. Math. Soc. 104(3) (1988), 999–1001. http://dx.doi.org/10.1090/S0002-9939-1988-0964886-9
    • R. Engelking, General Topology (Heldermann Verlag, Berlin 1989).
    • V. V. Fedorcuk, Bicompacta with noncoinciding dimensionalities, Soviet Math. Doklady 9(5) (1968), 1148–1150.
    • R. F. Gittings, Finite-to-one open maps of generalized metric spaces, Pacific J. Math. 59(1) (1975), 33–41. http://dx.doi.org/10.2140/pjm.1975.59.33
    • K. Kunen, Set Theory. An Introduction to Independence Proofs, (North-Holland, Amsterdam 1980).
    • L. B. Lawrence, The influence of a small cardinal on the product of a Lindelöf space and the irrationals, Proc. Amer. Math. Soc. 110(2) (1990),...
    • E.Michael, Paracompactness and the Lindelöf property in finite and countable Cartesian products, Compositio Math. 23(2) (1971), 199–214.
    • E. Michael, The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc. 69 (1963), 375–376. http://dx.doi.org/10.1090/S0002-9904-1963-10931-3
    • Y. Tanaka, Decompositions of spaces determined by compact subsets, Proc. Amer. Math. Soc. 97(3) (1986), 549–555. http://dx.doi.org/10.1090/S0002-9939-1986-0840644-9
    • E. K. van Douwen, The integers and topology, In K. Kunen and J. Vaughan, (eds.), Handbook of Set-Theoretic Topology 111–169 (North-Holland,...
    • S. Watson, The Construction of Topological Spaces: Planks and Resolutions, In M. Husek and J. van Mill (eds.), Recent Progress in General...
    • R. J. Wille, Sur les espaces faiblement rétractiles, Ned. Akad. Weten. Proc. 57 (1954), 527–532.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno