Ir al contenido

Documat


On complete accumulation points of discrete subsets

  • Alas, Ofelia T. [1] ; Wilson, Richard G. [2]
    1. [1] Universidade de São Paulo

      Universidade de São Paulo

      Brasil

    2. [2] Universidad Autónoma Metropolitana

      Universidad Autónoma Metropolitana

      México

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 8, Nº. 2, 2007, págs. 273-281
  • Idioma: inglés
  • DOI: 10.4995/agt.2007.1893
  • Enlaces
  • Resumen
    • We introduce a class of spaces in which every discrete subset has a complete accumulation point. Properties of this class are obtained and consistent examples are given to show that this clas sdiffers from the class of countably compact and the class of compact spaces. A number of questions are posed.

  • Referencias bibliográficas
    • O. T. Alas and R. G. Wilson, Minimal properties between T1 and T2, Houston J. Math. 32, no. 2 (2006), 493–504.
    • Z. Balogh, A. Dow, D. H. Fremlin and P. J. Nyikos, Countable tightness and proper forcing, Bulletin A.M.S. (N. S.) 19, no. 1 (1988), 295–298.
    • R. Engelking, General Topology, Heldermann Verlag, Berlin 1989.
    • V. Fedorcuk, On the cardinality of hereditarily separable compact Hausdorff spaces, Soviet Math. Doklady 16 (1975), 651–655.
    • L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton, 1960. http://dx.doi.org/10.1007/978-1-4615-7819-2
    • A. Gryzlov, Cardinal invariants and compactifications, Comm. Math. Univ. Carolinae 35, no. 1 (1994), 403–408.
    • I. Juhasz, Cardinal Funcions in Topology - Ten years later, Mathematical Centre Tracts 123, Mathematisch Centrum, Amsterdam, 1980.
    • H.-P. Künzi and D. van der Zypen, Maximal (sequentially) compact topologies, preprint, http://arxiv.org/PS cache/math/pdf/0306/0306082.pdf
    • J. van Mill, An introduction to βω, in Handbook of Set-theoretic Topology, North Holland, Amsterdam, 1984.
    • A. J. Ostaszewski, On countably compact perfectly normal spaces, J. London Math. Soc. 14 (1976), 501–516.
    • M. E. Rudin, Lectures on Set Theoretic Topology, CBMS, Regional Conference Series in Mathematics, No. 23, A. M. S., Providence, 1975.
    • R. M. Stephenson, Initially k-compact and related spaces, in Handbook of Set-theoretic Topology, North Holland, Amsterdam, 1984.
    • A. Tamariz and R. G. Wilson, Example of a T1 topological space without a Noetherian base, Proceedings A.M.S. 104, no. 1 (1988), 310–312.
    • V. V. Tkachuk, Spaces that are projective with respect to classes of mappings, Trans. Moscow Math. Soc. 50 (1988), 139–156.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno