Ir al contenido

Documat


Five different proofs of extraresolvability of countable totally bounded groups

  • Artico, Giuliano [2] ; Malykhin, Viatcheslav I. [1] ; Marconi, Umberto [2]
    1. [1] State University of Management

      State University of Management

      Rusia

    2. [2] Universita di Padova
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 4, Nº. 2, 2003, págs. 317-325
  • Idioma: inglés
  • DOI: 10.4995/agt.2003.2036
  • Enlaces
  • Resumen
    • We give different proofs of extraresolvability for countably in finite topological spaces and in particular for totally bounded groups.

  • Referencias bibliográficas
    • A. Bella and V. I. Malykhin, On certain subsets of a group, Questions Answers Gen. Topology 17 (1999), 183-197.
    • A. Bella and V. I. Malykhin, On certain subsets of a group II, Questions Answers Gen. Topology 19 (2001), 81-94.
    • J. G. Ceder, On maximally resolvable spaces, Fund. Math. 55 (1964), 87-93.
    • W. W. Comfort and S. Garcia-Ferreira, Resolvability: a selective survey and some new results, Topol. Appl. 74 (1996), 149-167. http://dx.doi.org/10.1016/S0166-8641(96)00052-1
    • W. W. Comfort and S. Garcia-Ferreira, Strongly extraresolvable groups and spaces, Topology Proc. 23 (1998 Summer), 45-74.
    • A. G. Elkin, On the maximal resolvability of products of topological spaces, Soviet Math. Dokl. 10 (1969), 659-662.
    • S. Garcia-Ferreira, V. I. Malykhin, and A. H. Tomita, Extraresolvable spaces, Topol. Appl. 101 (2000), 257-271. http://dx.doi.org/10.1016/S0166-8641(98)00125-4
    • E. Hewitt, A problem of set-theoretic topology, Duke Math. J. 10 (1943), 309-333. http://dx.doi.org/10.1215/S0012-7094-43-01029-4
    • A. Illanes, Finite and ω-resolvability, Proc. Amer. Math. Soc. 124 (1996), 1243-1246. http://dx.doi.org/10.1090/S0002-9939-96-03348-5
    • Li Feng and O. Massaveu, Exactly n-resolvable spaces and ω-resolvability, Math. Japon. 50/3 (1999), 333-339.
    • V. I. Malykhin, New results on totally bounded groups, Math. Notes 65 (1999), 397-399, Russian original in: Math. Zametki 65 (1999), 474-477.
    • V. I. Malykhin and I. V. Protasov, Maximal resolvability of bounded groups, Topol. Appl. 73 (1996), 227-232. http://dx.doi.org/10.1016/S0166-8641(96)00020-X
    • I. V. Protasov, Discrete subsets of topological groups, Math. Notes 55 (1994), 101-102, Russian original in: Math. Zametki 55 (1994), 150-151.
    • I. V. Protasov , Resolvability of -bounded groups (russian), Math. Stud. 124/5 (1995), 17-20.
    • E. G. Pytke'ev, On maximally resolvable spaces, Proc. Steklov Inst. Math. 154 (1984), 225-230.
    • P. L. Sharma and S. Sharma, Resolution property in generalized k-spaces, Topol. Appl. 29 (1988), 61-66. http://dx.doi.org/10.1016/0166-8641(88)90057-0
    • W. Sierpinski, Sur la décomposition des espaces métriques en ensembles disjoint, Fund. Math. 36 (1949), 68-71.
    • M. Talagrand, Compacts de fonctions mesurables et filtres non mesurables, Studia Math. 67 (1980), 13-43.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno