Ir al contenido

Documat


Bounded point evaluations for cyclic Hilbert space operators

  • Bourhim, A. [1]
    1. [1] Universite Mohamed
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 4, Nº. 2, 2003, págs. 301-316
  • Idioma: inglés
  • DOI: 10.4995/agt.2003.2035
  • Enlaces
  • Resumen
    • In this talk, to be given at a conference at Seconda Università degli Studi di Napoli in September 2001, we shall describe the set of analytic bounded point evaluations for an arbitrary cyclic bounded linear operator T on a Hilbert space H and shall answer some questions due to L. R. Williams.

  • Referencias bibliográficas
    • P. Aiena and O. Monsalve, Operators which do not have the single valued extension property, J. Math. Anal. Appl. 250 (2000), 435-448. http://dx.doi.org/10.1006/jmaa.2000.6966
    • A. Bourhim, Bounded point evaluations and local spectral theory, 1999-2000 DICTP Diploma thesis, (available on: http:/www.ictp.trieste.it/~pub_off(IC/2000/118)).
    • A. Bourhim, C. E. Chidume and E. H. Zerouali, Bounded point evaluations for cyclic operators and local spectra, Proc. Amer. Math. Soc. 130...
    • A. Bourhim, Points d'évaluations bornées des opérateurs cycliques et comportement radial des fonctions dans la classe de Nevalinna Ph.D....
    • J. Bran, Subnormal operators, Duke Math. J. 22 (1955), 75-94. http://dx.doi.org/10.1215/S0012-7094-55-02207-9
    • S. Clary, Equality of spectra of quasisimilar hyponormal operators, Proc. Amer. Math. Soc., 53 (1975), 88-90. http://dx.doi.org/10.1090/S0002-9939-1975-0390824-7
    • I. Colojoara and C. Foias, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968.
    • J. B. Conway, The Theory of Subnormal Operators, volume 36 of Mathematical Surveys and Monographs. American Mathematical Society, Providence,...
    • B. P. Duggal, p-hyponormal operators satisfy Bishop's condition (β), Integral Equations Operator Theory 40 (2001), 436-440. http://dx.doi.org/10.1007/BF01198138
    • J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61-69. http://dx.doi.org/10.2140/pjm.1975.58.61
    • P. R. Halmos, A Hilbert Space Problem Book, Springer-Verlag, New York, 1982. http://dx.doi.org/10.1007/978-1-4684-9330-6
    • D. E. Herrero, On multicyclic operators, Integral Equations and Operator Theory, 1/1 (1978), 57-102. http://dx.doi.org/10.1007/BF01682740
    • K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, London Mathematical Society Monograph New Series 20 (2000).
    • M. Putinar, Hyponormal operators are subscalar, J. Operator Theory, 12 (1984), 385-395.
    • C. R. Putnam, An inequality for the area of hyponormal spectra, Math. Z. 116 (1970), 323-330. http://dx.doi.org/10.1007/BF01111839
    • M. Raphael, Quasisimilarity and essential spectra for subnormal operators, Indiana Univ. Math. J. 31 (1982), 243-246. http://dx.doi.org/10.1512/iumj.1982.31.31021
    • W. C. Ridge, Approximate point spectrum of a weighted shift, Trans. Amer. Math. Soc. 147 (1970), 349-356. http://dx.doi.org/10.1090/S0002-9947-1970-0254635-5
    • A. L. Shields, Weighted shift operators and analytic function theory, in Topics in Operator Theory, Mathematical Surveys, N0 13 (ed. C. Pearcy),...
    • J. G. Stampfli, On Hyponormal and Toeplitz operators, Math. Ann. 183 (1969), 328-336. http://dx.doi.org/10.1007/BF01350800
    • T. T. Trent, H2(μ) Spaces and bounded point evaluations, Pac. J. Math., 80 (1979), 279-292. http://dx.doi.org/10.2140/pjm.1979.80.279
    • L. R. Williams, Bounded point evaluations and local spectra of cyclic hyponormal operators, Dynamic Systems and Applications 3 (1994), 103-112.
    • L. R. Williams, Subdecomposable operators and rationally invariant subspaces, Operator theory: Adv. Appl., 115 (2000), 297-309.
    • L. Yang, Hyponormal and subdecomposable operators, J. Functional Anal. 112 (1993), 204- 217. http://dx.doi.org/10.1006/jfan.1993.1030

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno