Ir al contenido

Documat


Groups with a small set of generators

  • Dikranjan, Dikran [1] ; Marconi, Umberto [2] ; Moresco, Roberto [2]
    1. [1] Università di Udine
    2. [2] Universita di Padova
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 4, Nº. 2, 2003, págs. 327-350
  • Idioma: inglés
  • DOI: 10.4995/agt.2003.2037
  • Enlaces
  • Resumen
    • Following [22] we study the class S of all groups that admit a small set of generators. Here we adopt also another notion of smallness (P-small) introduced by Prodanov in the case of abelian groups. We push further some results obtained in [22] (by adding some new members of S) and partially resolve an open question posed in [22]. We show that in most cases the groups in S admit a P-small set of generators.

  • Referencias bibliográficas
    • G. Artico, V. Malykhin and U. Marconi, Some large and small sets in topological groups, Math. Pannon. 12 (2001), no. 2, 157-165.
    • A. Bella and V. Malykhin, Small, large and other subsets of a group, Questions and Answers in General Topology, 17 (1999) 183-197.
    • A. Bella and V. Malykhin, On certain subsets of a group, II, Questions Answers Gen. Topology 19 (2001), no. 1, 81-94.
    • W. W. Comfort and L. C. Robertson, Extremal phenomena in certain classes of totally bounded groups, Dissertationes Mathematicae, 272 (1988).
    • W.W. Comfort and K.A. Ross, Topologies induced by groups of characters, Fund. Math., 55 (1964) 283-291.
    • D. Dikranjan, Iv. Prodanov, A class of compact abelian groups, Annuaire Univ. Sofia, Fac. Math. Méc. 70, (1975/76) 191-206.
    • D. Dikranjan, Iv. Prodanov and L. Stoyanov, Topological Groups: Characters, Dualities and Minimal Group Topologies, Pure and Applied Mathematics,...
    • A. Douady, Cohomologie des groupes compacts totalements discontinus, Séminaire Bourbaki 1959/60, Exposé 189, Secrétariat Math. Paris, 1960.
    • R. Engelking, General Topology, 2nd edition, Heldermann Verlag, Berlin 1989.
    • E. Folner, On groups with full Banach mean value, Math. Scand. 3 (1955), 243-254.
    • E. Folner, Note on groups with and without full Banach mean value, Math. Scand. 5 (1957), 5-11.
    • L. Fuchs, Infinite Abelian groups, Vol. I, Academic Press, New York, 1970.
    • E. Glasner, On minimal actions of Polish groups, 8th Prague Topological Symposium on General Topology and Its Relations to Modern Analysis...
    • E. Glasner and B. Weiss, Interpolation sets for subalgebras of l1(Z), Israel J. Math. 44 (1983), no. 4, 345-360.
    • R. Gusso, Insiemi large, small e P-small nei gruppi astratti e nei gruppi topologici, MS. Thesis, Padua University, Padua 2000.
    • R. Gusso, Large and small sets with respect to homomorphisms and products of groups, Applied General Topology 3, n. 2 (2002), 133-143.
    • E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Grundlehren der mathematischen Wissenschaften 115, Springer, Berlin 1963.
    • G. Higman, B. H. Neumann and H. Neumann Embedding theorems for groups, J. London Math. Soc. 24 (1949) 247-254. http://dx.doi.org/10.1112/jlms/s1-24.4.247
    • K.-H. Hofmann and S. A. Morris, Weight and c, J. Pure Applied Algebra 68 (1990), 181-194. http://dx.doi.org/10.1016/0022-4049(90)90142-5
    • K.-H. Hofmann and S. A. Morris, The Structure of Compact Groups. A primer for the student-a handbook for the expert, de Gruyter Studies in...
    • J. Humphreys, Linear algebraic groups, Springer Verlag, New York-Heidelberg-Berlin, 1975 http://dx.doi.org/10.1007/978-1-4684-9443-3
    • V. Malykhin and R. Moresco, Small generated groups, Questions Answers Gen. Topology 19 (2001), no. 1, 47-53.
    • Iv. Prodanov, Some minimal group topologies are precompact, Math.Ann. 227 (1977), 117-125. http://dx.doi.org/10.1007/BF01350188
    • P. Ribes and L. Zalesskii, Profinite groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. Results in Mathematics and Related Areas. 3rd...
    • S. Shelah, On a problem of Kurosh, Jónsson groups and applications, In: S. I. Adian, W. W. Boone and G. Higman, Eds., Word Problems II, North-Holland,...
    • N. T. Varopoulos, A theorem on the continuity of homomorphisms of locally compact groups, Proc. Cambr. Phil. Soc. 60 (1964), 449-463. http://dx.doi.org/10.1017/S0305004100037968
    • A. Vitolo and U. Zannier, On small sets in a group, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 82 (1988), no. 3, 413-418.
    • J. Wilson, Profinite groups, London Mathematical Society Monographs. New Series, 19, The Clarendon Press, Oxford University Press, New York,...
    • E. Zelenyuk and I. Protasov, Topologies on abelian groups, Math. USSR Izvestiya 37 (1991), 445-460. Russian original: Izvestia Akad. Nauk...
    • E. Zel0manov, On periodic compact groups, Israel J. Math. 77 (1992), no. 1-2, 83-95. (1998), no. 1-3, 119-125.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno