Ir al contenido

Documat


More on ultrafilters and topological games

  • González-Silva, R.A. [1] ; Hrusák, M. [2]
    1. [1] Universidad de Guadalajara

      Universidad de Guadalajara

      México

    2. [2] Universidad Nacional Autónoma de México

      Universidad Nacional Autónoma de México

      México

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 10, Nº. 2, 2009, págs. 207-219
  • Idioma: inglés
  • DOI: 10.4995/agt.2009.1734
  • Enlaces
  • Resumen
    • Two different open-point games are studied  here,  the G-game and the Gp-game, defined for each p ∈ ω∗. We prove that for each p ∈ ω∗, there exists a space in  which none of  the players of  the Gp-game has a winning  strategy.Nevertheless a result of P. Nyikos, essentially shows that it is consistent, that there exists a countable space in which all these games are undetermined.We construct a countably compact space in which player II of the Gp-game is the winner, for every p ∈ ω∗. With the same technique of construction we built a countably compact space X, such that in X ×X player II of the G-game is the winner. Our last result is to construct ω1-many countably compact spaces, with player I of the G-game as a winner in any countable product of them, but player II is the winner in the product of all of them in the G-game.

  • Referencias bibliográficas
    • A. V. Arkhangelskii, Classes of topological groups, Russian Math. Surveys 36 (1981), no. 3, 151-174.
    • A. R. Bernstein, A new kind of compactness for topological spaces, Fund. Math. 66 (1970), 185-193. https://doi.org/10.4064/fm-66-2-185-193
    • D. Booth, Ultrafilters on a countable set, Ann. Math. Logic 2 (1970), 1-24. https://doi.org/10.1016/0003-4843(70)90005-7
    • A. Bouziad, The Ellis theorem and continuity in groups, Topology Appl. 50 (1993),73-80. https://doi.org/10.1016/0166-8641(93)90074-N
    • A. Blaszczyk and A. Szymanski, Cohen algebras and nowhere dense ultrafilters, Bulletin of the Polish Acad. of Sciences Math. 49 (2001), 15-25.
    • W. Comfort and S. Negrepontis, The theory of ultrafilters, Springer-Verlag, Berlin, 1974. https://doi.org/10.1007/978-3-642-65780-1
    • A. Dow, A. V. Gubbi and A. Szyma'nski, Rigid Stone spaces within ZFC, Proc. Amer. Math. Soc. 102 (1988), 745-748. https://doi.org/10.1090/S0002-9939-1988-0929014-4
    • R. Engelking, General Topology, Sigma Series in Pure Mathematics Vol. 6, Heldermann Verlag Berlin, 1989.
    • Z. Frolık, Sums of ultrafilters, Bull. Amer. Math. Soc. 73 (1967), 87-91. https://doi.org/10.1090/S0002-9904-1967-11653-7
    • S. García-Ferreira, Three orderings on !∗, Topology Appl. 50 (1993), 199-216. https://doi.org/10.1016/0166-8641(93)90021-5
    • S. García-Ferreira and R. A. Gonz'alez-Silva, Topological games defined by ultrafilters, Topology Appl. 137 (2004), 159-166. https://doi.org/10.1016/S0166-8641(03)00205-0
    • S. García-Ferreira and R. A. González-Silva, Topological games and product spaces, Coment. Math. Univ. Carolinae 43 (2002), no. 4, 675-685.
    • J. Gerlits and Zs. Nagy, Some properties of C(X), I, Topology Appl. 14 (1982), 151-161. https://doi.org/10.1016/0166-8641(82)90065-7
    • J. Ginsburg and V. Saks, Some applications of ultrafilters in topology, Pacific J. Math. 57 (1975), 403-418. https://doi.org/10.2140/pjm.1975.57.403
    • G. Gruenhage, Infinite games and generalizations of first countable spaces, Gen. Topol. Appl. 6 (1976), 339-352. https://doi.org/10.1016/0016-660X(76)90024-6
    • M. Hrusák, Fun with ultrafilters and special functions, manuscript.
    • M. Hrusák, Selectivity of almost disjoint families, Acta Univ. Caroline-Math. et Physica, 41 (2000), no. 2, 13-21.
    • Jan van Mill, An introduction to βω en: Handbook of Set-Theoretic Topology, editors K. Kunen y J. E. Vaughan, North-Holland, (1984), 505-567....
    • K. Kunen, Weak P-points in N∗, Colloq. Math. Soc. János Bolyai 23, Budapest (Hungary), 741-749.
    • W. F. Lindgren and A. Szymanski, A non-pseudocompact product of countably compact spaces via Seq, Proc. Amer. Math. Soc. 125 (1997), no. 12,...
    • P. Nyikos, Subsets of ωω and the Fréchet-Urysohn and αi -properties, Topology Appl. 48 (1992) 91-116. https://doi.org/10.1016/0166-8641(92)90021-Q
    • P. Simon, Applications of independent linked families, Colloq. Math. Soc. János Bolyai 41 (1983), 561-580.
    • P. L. Sharma, Some characterizations of the W-spaces and w-spaces, Gen. Topol. Appl. 9 (1978), 289-293. https://doi.org/10.1016/0016-660X(78)90032-6
    • J. E. Vaughan, Countably compact sequentially compact spaces, in: Handbook of Set-Theoretic Topology, editors J. van Mill and J. Vaughan,...
    • J. E. Vaughan, Two spaces homeomorphic to Seq(p), Coment. Math. Univ. Carolinae 42 (2001), no. 1, 209-218.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno