Ir al contenido

Documat


Michael spaces and Dowker planks

  • Caserta, Agata [2] ; Watson, Stephen [1]
    1. [1] York University (Canadá)

      York University (Canadá)

      Canadá

    2. [2] Seconda Università degli Studi di Napoli
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 10, Nº. 2, 2009, págs. 245-267
  • Idioma: inglés
  • DOI: 10.4995/agt.2009.1738
  • Enlaces
  • Resumen
    • We investigate the Lindelöf property of Dowker planks. In particular, we give necessary conditions such that the product of a Dowker plank with the irrationals is not Lindelöf. We also show that if there exists a Michael space, then, under some conditions involving singular cardinals, there is one that is a Dowker plank.

  • Referencias bibliográficas
    • M. Burke and M. Magidor, Shelah’s pcf theory and its applications, Ann. Pure Appl. Logic 50, (1990) 207–254. http://dx.doi.org/10.1016/0168-0072(90)90057-9
    • E. K. van Douwen, The integers and topology, in K. Kunen and J. Vaughan, editors, Handbook of Set-Theoretic Topology, 111–169, North-Holland,...
    • C. H. Dowker, Local dimension of normal spaces, Quart. J. Math. Oxford 2 (1990), no. 6, 101–120.
    • R. Engelking, General Topology, Heldermann Verlag, Berlin 1989.
    • R. Haydon, On compactness in spaces of measure and measure compact spaces, Proc. London Math. Soc. 29 (1974), no. 6, 1–16.
    • K. Kunen, Set Theory. An Introduction to Independence Proofs, North-Holland, Ams- terdam 1980.
    • E. Michael, The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc. 69 (1963), 375–376. http://dx.doi.org/10.1090/S0002-9904-1963-10931-3
    • J. Tatch Moore, Some of the combinatorics related to Michael’s problem, Proc. Amer. Math. Soc. 127, (1999), no. 8, 2459–2467.
    • S. Watson, The Construction of Topological Spaces: Planks and Resolutions, in M. Husek and J. van Mill (eds.), Recent Progress in General...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno