Ir al contenido

Documat


A note on locally v-bounded spaces

  • Georgiou, D.N. [1] ; Iliadis, S.D. [1]
    1. [1] University of Patras

      University of Patras

      Dimos Patras, Grecia

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 6, Nº. 2, 2005, págs. 143-148
  • Idioma: inglés
  • DOI: 10.4995/agt.2005.1953
  • Enlaces
  • Resumen
    • In this paper, on the family O(Y ) of all open subsets of a space Y (actually on a complete lattice) we define the so called strong v-Scott topology, denoted by τ8v,  where v is an infinite cardinal. This topology defines on the set C(Y,Z) of all continuous functions on the space Y to a space Z a topology τ8v. The topology τ8v, is always larger than or equal to the strong Isbell topology. We study the topology τ8v in the case where Y is a locally v-bounded space.

  • Referencias bibliográficas
    • R. Arens and J. Dugundji, Topologies for function spaces, Pacific J. Math. 1(1951), 5-31. http://dx.doi.org/10.2140/pjm.1951.1.5
    • J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass. 1966.
    • S. Gagola and M. Gemignani, Absolutely bounded sets, Mathematica Japonicae, Vol. 13, No. 2 (1968), 129-132.
    • D. N. Georgiou and S. D. Iliadis, A generalization of core compact spaces, (V Iberoamerican Conference of Topology and its Applications) Topology...
    • G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott, A Compendium of Continuous Lattices, Springer, Berlin-Heidelberg-New...
    • P. Lambrinos, Subsets (m, n)-bounded in a topological space, Mathematica Balkanica, 4(1974), 391-397.
    • P. Lambrinos, Locally bounded spaces, Proceedings of the Edinburgh Mathematical Society, Vol. 19 (Series II) (1975), 321-325.
    • P. Lambrinos and B. K. Papadopoulos, The (strong) Isbell topology and (weakly) continuous lattices, Continuous Lattices and Applications,...
    • R. McCoy and I. Ntantu, Topological properties of spaces of continuous functions, Lecture Notes in Mathematics, 1315, Springer Verlang (1988).
    • H. Poppe, On locally defined topological notions, Q and A in General Topology, Vol. 13 (1995), 39-53.
    • F. Schwarz and S. Weck, Scott topology, Isbell topology and continuous convergence, Lecture Notes in Pure and Appl. Math. No. 101, Marcel...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno