Ir al contenido

Documat


Compactness properties of bounded subsets of spaces of vector measure integrable functions and factorization of operators

  • Garcia-Raffi, Lluís [1] ; Sánchez-Pérez, E.A. [1]
    1. [1] Universidad Politécnica de Valencia

      Universidad Politécnica de Valencia

      Valencia, España

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 6, Nº. 2, 2005, págs. 135-142
  • Idioma: inglés
  • DOI: 10.4995/agt.2005.1952
  • Enlaces
  • Resumen
    • Using compactness properties of bounded subsets of spaces of vector measure integrable functions and a representation theorem for q-convex Banach lattices, we prove a domination theorem for operators between Banach lattices. We generalize in this way several classical factorization results for operators between these spaces, as psumming operators.

  • Referencias bibliográficas
    • G. P. Curbera, Operators into L1 of a vector measure and applications to Banach lattices, Math. Ann. 293 (1992), 317-330. http://dx.doi.org/10.1007/BF01444717
    • G. P. Curbera, Banach space properties of L1 of a vector measure, Proc. Amer. Math. Soc. 123 (1995), 3797-3806.
    • A. Defant, Variants of the Maurey-Rosenthal theorem for quasi Köthe function spaces, Positivity 5 (2001), 153-175. http://dx.doi.org/10.1023/A:1011466509838
    • A. Defant and K. Floret, “Tensor Norms and Operator Ideals”, North Holland, Amsterdam (1993).
    • J. Diestel, H. Jarchow and A. Tonge, “Absolutely Summing Operators”, Cambridge studies in advanced mathematics 43, Cambridge (1995).
    • J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys, 15, Amer. Math. Soc., Providence, RI. 1977. http://dx.doi.org/10.1090/surv/015
    • A. Fernández, F. Mayoral, F. Naranjo, F. Sáez and E. A. Sánchez-Pérez, Spaces of p-integrable functions with respect to a vector measure,...
    • J. Lindenstrauss and L. Tzafriri, “Classical Banach Spaces I and II”, Springer, Berlin (1996).
    • F. Martínez-Giménez and E. A. Sánchez-Pérez, Vector measure range duality and factorizations of (D, p)-summing operators from Banach function...
    • S. Okada and W. J. Ricker, The range of the integration map of a vector measure, Arch. Math. 64(1995), 512-522. http://dx.doi.org/10.1007/BF01195133
    • S. Okada, W. J. Ricker and L. Rodríguez-Piazza, Compactness of the integration operator associated with a vector measure, Studia Math. 150(2)...
    • A. Pietsch, “Operator Ideals”, North-Holland, Amsterdam (1980).
    • E. A. Sánchez-Pérez, Compactness arguments for spaces of p-integrable functions with respect to a vector measure and factorization of operators...
    • E. A. Sánchez-Pérez, Spaces of integrable functions with respect to vector measures of convex range and factorization of operators from Lp-spaces,...
    • P.Wojtaszczyk, “Banach Spaces for Analysts”, Cambridge University Press. Cambridge. 1991. http://dx.doi.org/10.1017/CBO9780511608735

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno