Ir al contenido

Documat


On semi-Lipschitz functions with values in a quasi-normed linear space

  • Sánchez-Álvarez, José Manuel [1]
    1. [1] Universidad Politécnica de Valencia

      Universidad Politécnica de Valencia

      Valencia, España

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 6, Nº. 2, 2005, págs. 217-228
  • Idioma: inglés
  • DOI: 10.4995/agt.2005.1956
  • Enlaces
  • Resumen
    • In a recent paper, S. Romaguera and M. Sanchis discussed several properties of semi-Lipschitz real valued functions. In this paper we analyze the structure of the space of semi-Lipschitz functions that are valued in a quasi-normed linear space. Our approach is motivated, in part, by the fact that this structure can be applied to study some processes in the theory of complexity spaces.

  • Referencias bibliográficas
    • J. Deák, A bitopological view of quasi-uniform completeness, I, Studia Sci. Math. Hungar. 30 (1995), 389–409; II 30 (1995), 411-431; 31 (1996),...
    • D. Doitchinov, On completeness in quasi-metric spaces, Topology Appl. 30 (1988), 127–148. http://dx.doi.org/10.1016/0166-8641(88)90012-0
    • P. Flecher and W. Hunsaker, Completeness using pairs of filters, Topology Appl. 44 (1992), 149–155. http://dx.doi.org/10.1016/0166-8641(92)90087-G
    • P. Fletcher and W. F. Lindgren, On Quasi-Uniform Spaces, Marcel Dekker, New York, (1982).
    • L. M. García-Raffi, S. Romaguera and E. A. Sánchez-Pérez, Sequence spaces and asymmetric norms in the theory of computational complexity,...
    • L. M. García-Raffi, S. Romaguera and E. A. Sánchez-Pérez, The supremum asymmetric norm on sequence algebras: a general framework to measure...
    • K. Keimel and W. Roth, Ordered Cones and Approximation, Springer-Verlag, Berlin (1992).
    • H. P. A. K¨unzi, Nonsymmetric distances and their associated topologies: about the origin of basic ideas in the area of asymmetric topology,...
    • H. P. A. K¨unzi, Nonsymmetric topology, in Topology with Applications, Bolyai Soc. Math. Studies 4, pp. 303–338, Szekszard, Hungary, (1993).
    • S. Romaguera, Left K-completeness in quasi-metric spaces, Math. Nachr. 157 (1992), 15–23. http://dx.doi.org/10.1002/mana.19921570103
    • S. Romaguera and M. Sanchis, Properties of the normed cone of semi-Lipschitz functions, Acta Math. Hungar. 108 (1-2) (2005), 55–70. http://dx.doi.org/10.1007/s10474-005-0208-9
    • S. Romaguera and M. Sanchis, On semi-Lipschitz functions and best approximation in quasi-metric spaces, J. Approximation Theory 283 (2000),...
    • S. Romaguera and M. Sanchis, Applications of utility functions defined on quasi-metric spaces, J. Math. Anal. Appl. 283 (2003), 219–235. http://dx.doi.org/10.1016/S0022-247X(03)00285-3
    • S. Romaguera and M. Schellekens, Quasi-metric properties of complexity spaces, Topology Appl. 98 (1999), 311–322. http://dx.doi.org/10.1016/S0166-8641(98)00102-3
    • S. Romaguera and M. Schellekens, Duality and quasi-normability for complexity spaces, Appl. Gen. Topol. 3 (1) (2002), 91–112.
    • M. Schellekens, The Smyth completion: A common foundation for denotational semantics and complexity analysis, Electron. Notes Comput. Sci....
    • M. B. Smyth, Totally bounded spaces and compact ordered spaces as domains of computation, in Topology and Category Theory in Computer Science,...
    • M. B. Smyth, Completeness of quasi-uniform and syntopological spaces, J. London Math. Soc. 49 (1994), 385–400. http://dx.doi.org/10.1112/jlms/49.2.385
    • Ph. Sünderhauf, Quasi-uniform completeness in terms of Cauchy nets, Acta Math. Hungar. 69 (1995), 47–54. http://dx.doi.org/10.1007/BF01874606

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno