Ir al contenido

Documat


Fenestrations induced by perfect tilings

  • Arenas, F.G. [1] ; Puertas, M.L. [1] Árbol académico
    1. [1] Universidad de Almería

      Universidad de Almería

      Almería, España

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 3, Nº. 1, 2002, págs. 77-84
  • Idioma: inglés
  • DOI: 10.4995/agt.2002.2114
  • Enlaces
  • Resumen
    • In this paper we study those regular fenestrations (as defined by Kronheimer in [3]) that are obtained from a tiling of a topological space. Under weak conditions we obtain that the canonical grid is also the minimal grid associated to each tiling and we prove that it is a T0-Alexandroff semirregular trace space. We also present some examples illustrating how the properties of the grid depend on the properties of the tiling and we pose some questions. Finally we study the topological properties of the grid depending on the properties of the space and the tiling.

  • Referencias bibliográficas
    • F.G. Arenas, Tilings in topological spaces, Int. J. Math. Math. Sci. 22 (1999), No.3, 611-616.
    • B. Grunbaum and G.C. Shephard, Tilings and Patterns, Freeman, New York, 1986.
    • E.H. Kronheimer, The topology of digital images, Topology Appl. , 46 (1992), 279-303. http://dx.doi.org/10.1016/0166-8641(92)90019-V
    • Mark J. Nielsen, Singular points of a convex tiling, Math. Ann. 284 (1989), 601-616. http://dx.doi.org/10.1007/BF01443354
    • Mark J. Nielsen, Singular points of a star-finite tiling, Geom. Dedic. 33 (1990), 99-109. http://dx.doi.org/10.1007/BF00147605
    • Mark J. Nielsen, On two questions concerning tilings, Israel J. Math. 81 (1993), 129-143. http://dx.doi.org/10.1007/BF02761301
    • Stephen Willard, General Topology, Addison-Wesley Publ. Comp. 1970.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno