Ir al contenido

Documat


The hyperspaces Cn(X) for finite ray-graphs

    1. [1] Stonehill College

      Stonehill College

      Town of Easton, Estados Unidos

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 14, Nº. 1, 2013, págs. 73-84
  • Idioma: inglés
  • DOI: 10.4995/agt.2013.1619
  • Enlaces
  • Resumen
    • In this paper we consider the hyperspace Cn(X) of non-empty and closed subsets of a base space X with up to n connected components. The class of base spaces we consider we call finite ray-graphs, and are a noncompact variation on finite graphs. We prove two results about the structure of these hyperspaces under different topologies (Hausdorff metric topology and Vietoris topology).

  • Referencias bibliográficas
    • R. Duda, On the hyperspace of subcontinua of a finite graph I, Fund. Math. 62 (1968), 265–286.
    • R. Duda, On the hyperspace of subcontinua of a finite graph II, Fund. Math. 63 (1968), 225–255.
    • C. Eberhart and S. Nadler, Hyperspaces of cones and fans, Proc. Amer. Math. Soc. 77 (1979), no. 2, 279–288.
    • N. Esty, On the contractibility of certain hyperspaces, Top. Proc. 32 (2008), 291–300.
    • A. Illanes, The hyperspace C2(X) for a finte graph is unique, Glasnik Mat. 37 (2002), 347–363.
    • A. Illanes, Finite graphs X have unique hyperspaces Cn(X), Top. Proc. 27 (2003), 179–188.
    • A. Illanes and S. Nadler, Hyperspaces: Fundamentals and Recent Advances, Marcel Dekker, Inc., New York, 1999.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno